scholarly journals Biological and Molecular Variability of Lettuce Mosaic Virus Isolates

1997 ◽  
Vol 87 (4) ◽  
pp. 397-403 ◽  
Author(s):  
F. Revers ◽  
H. Lot ◽  
S. Souche ◽  
O. Le Gall ◽  
T. Candresse ◽  
...  

Lettuce mosaic potyvirus (LMV) causes severe disease of commercial lettuce crops. LMV isolates show wide biological variability, particularly in their ability to overcome the resistance genes described in Lactuca sativa. For a better understanding of the molecular interaction between lettuce and LMV, biological and molecular characterization of a collection of 10 LMV isolates known to differ in virulence or aggressiveness was performed. The ability of these isolates to overcome the resistance genes was reevaluated under standardized conditions. To study the molecular variability of LMV, an immunocapture-reverse transcription-poly-merase chain reaction technique, coupled with direct sequencing, was used to obtain nucleotide sequence data from three short regions of the LMV genome. Clustering analysis was performed and compared to the biological properties of the 10 isolates. Three groups of LMV isolates were discriminated based on the molecular data. These groups appear to correlate with the geographic origin of the isolates rather than with their pathogenicity. Sequence comparison with California isolates clearly showed that the California isolates are related to the western European isolates, raising the possibility of past exchanges of LMV between western Europe and California.

1999 ◽  
Vol 65 (2) ◽  
pp. 606-610 ◽  
Author(s):  
Gareth J. McKay ◽  
Damian Egan ◽  
Elizabeth Morris ◽  
Carol Scott ◽  
Averil E. Brown

ABSTRACT Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.


2013 ◽  
Vol 5 ◽  
pp. BECB.S10886 ◽  
Author(s):  
Brijesh Singh Yadav ◽  
Venkateswarlu Ronda ◽  
Dinesh P. Vashista ◽  
Bhaskar Sharma

The recent advances in sequencing technologies and computational approaches are propelling scientists ever closer towards complete understanding of human-microbial interactions. The powerful sequencing platforms are rapidly producing huge amounts of nucleotide sequence data which are compiled into huge databases. This sequence data can be retrieved, assembled, and analyzed for identification of microbial pathogens and diagnosis of diseases. In this article, we present a commentary on how the metagenomics incorporated with microarray and new sequencing techniques are helping microbial detection and characterization.


Cladistics ◽  
1992 ◽  
Vol 8 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Victor A. Albert ◽  
Brent D. Mishler

1982 ◽  
Vol 39 (1) ◽  
pp. 1-30 ◽  
Author(s):  
George L. Gabor Miklos ◽  
Amanda Clare Gill

SummaryThe nucleotide sequence data from highly repeated DNAs of inverte-brates and mammals are summarized and briefly discussed. Very similar conclusions can be drawn from the two data bases. Sequence complexities can vary from 2 bp to at least 359 bp in invertebrates and from 3 bp to at least 2350 bp in mammals. The larger sequences may or may not exhibit a substructure. Significant sequence variation occurs for any given repeated array within a species, but the sources of this heterogeneity have not been systematically partitioned. The types of alterations in a basic repeating unit can involve base changes as well as deletions or additions which can vary from 1 bp to at least 98 bp in length. These changes indicate that sequence per se is unlikely to be under significant biological constraints and may sensibly be examined by analogy to Kimura's neutral theory for allelic variation. It is not possible with the present evidence to discriminate between the roles of neutral and selective mechanisms in the evolution of highly repeated DNA.Tandemly repeated arrays are constantly subjected to cycles of amplification and deletion by mechanisms for which the available data stem largely from ribosomal genes. It is a matter of conjecture whether the solutions to the mechanistic puzzles involved in amplification or rapid redeployment of satellite sequences throughout a genome will necessarily give any insight into biological functions.The lack of significant somatic effects when the satellite DNA content of a genome is significantly perturbed indicates that the hunt for specific functions at the cellular level is unlikely to prove profitable.The presence or in some cases the amount of satellite DNA on a chromosome, however, can have significant effects in the germ line. There the data show that localized condensed chromatin, rich in satellite DNA, can have the effect of rendering adjacent euchromatic regions rec−, or of altering levels of recombination on different chromosomes. No data stemming from natural populations however are yet available to tell us if these effects are of adaptive or evolutionary significance.


2006 ◽  
Vol 126 (4) ◽  
pp. 415-423 ◽  
Author(s):  
J.J. Li ◽  
G.L. Pei ◽  
H.X. Pang ◽  
A. Bilderbeck ◽  
S.S. Chen ◽  
...  

1984 ◽  
Vol 12 (6) ◽  
pp. 1011-1014 ◽  
Author(s):  
G. G. KNEALE ◽  
OLGA KENNARD

Sign in / Sign up

Export Citation Format

Share Document