scholarly journals Temporal Divergence in the Pattern of Messenger RNA Expression in Bovine Embryos Cultured from the Zygote to Blastocyst Stage In Vitro or In Vivo

2003 ◽  
Vol 69 (4) ◽  
pp. 1424-1431 ◽  
Author(s):  
P. Lonergan
2006 ◽  
Vol 18 (2) ◽  
pp. 236 ◽  
Author(s):  
M. Nowak-Imialek ◽  
C. Wrenzycki ◽  
D. Herrmann ◽  
I. Lagutina ◽  
A. Lucas-Hahn ◽  
...  

Epigenetic modifications of the genome, such as covalent modifications of histones, are crucial for transcriptional regulation during development. The N-terminal tails of the histones are subject to post-translational modifications, including acetylation, deacetylation and methylation. histone acetylation loosens chromatin packing and correlates with transcriptional activation. The enzymes Histone acetyltransferases (HATs) transfer acetyl moieties to the lysine residues of histones H2A, H2B, H3, and H4. Histone acetylation is a reversible process which is catalyzed by the histone deacetylase (HDAC) and results in transcriptional repression. Histone methyltransferase (HMT) is responsible for the methylation of arginine in histones 3 and 4, playing an important role in transcriptional activation of genes. In contrast, the H3 Lys 9 methylation is associated with a transcriptionally repressive heterochromatin. The objective of the present study was to determine the effects of different origins of embryos on the relative abundance of transcripts for the histone acetyltransferase 1 (HAT1), histone deacetylase 2 (HDAC2), histone metyltransferases (SUV39H1 and G9A), and heterochromatin protein 1 (HP1). Messenger RNA expression profiles of these genes were investigated in bovine oocytes and pre-implantation embryos up to the blastocyt stage produced either in vitro by two different culture systems, i.e. SOF+BSA or TCM+SERUM, by somatic cloning using adult male and female fibroblasts, parthenogenetic activation, and androgenetic construction, or in vivo, employing semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). Significant differences are described below. HAT1, SUV39H1, G9A, and HP1 mRNA transcripts decreased in enucleated oocytes, compared with immature oocytes. The relative abundance of HAT1 and SUV39H1 transcripts was significantly increased in NT-derived zygotes produced from adult female fibroblasts, compared to their in vitro fertilized and parthenogenetic counterparts. No differences were found in the relative abundances of gene transcripts at the 8-16-cell stage, except for parthenogenetic embryos in which SUV39H1 transcripts were significantly higher than in all other 8-16 cell groups. The relative abundance of SUV39H1, G9A, and HP1 transcripts were significantly higher in NT-derived blastocysts derived from adult male fibroblasts than in their in vivo-generated counterparts. HP1 and G9A transcript levels were significantly increased in NT-derived blastocysts derived from male fibroblasts compared to NT-derived embryos produced from female fibroblasts. The results show that the in vitro environment and the nuclear transfer protocol affect mRNA expression patterns of histone modification genes in pre-implantation bovine embryos.


2002 ◽  
Vol 46 (10) ◽  
pp. 2648-2657 ◽  
Author(s):  
Brigitte Bau ◽  
Pia M. Gebhard ◽  
Jochen Haag ◽  
Thomas Knorr ◽  
Eckart Bartnik ◽  
...  

2007 ◽  
Vol 74 (8) ◽  
pp. 972-977 ◽  
Author(s):  
Deirdre Corcoran ◽  
Dimitrios Rizos ◽  
Trudee Fair ◽  
Alex C.O. Evans ◽  
Patrick Lonergan

2006 ◽  
Vol 18 (2) ◽  
pp. 174
Author(s):  
A. S. Lopes ◽  
S. E. Madsen ◽  
N. B. Ramsing ◽  
L. H. Larsen ◽  
T. Greve ◽  
...  

In vitro-produced (IVP) bovine embryos differ (e.g. morphology and physiology) from their in vivo counterparts. Oxygen consumption is an indicator of the overall metabolic activity of a single embryo. Therefore, the aim of this study was to determine and compare respiration rates of in vivo- and in vitro-produced bovine day 7 embryos. Diameters of these two embryo types were also compared. In vivo embryos (n = 28) were recovered from 8 superovulated Holstein Frisian cows on day 7 following AI, while IVP embryos (n = 160; Holm et al. 1999 Theriogenology 52, 683-700) were used on day 7 after fertilization. Embryos were measured (outer diameter) and morphologically evaluated (Quality 1 to 4, IETS Manual, 1998). Only transferable in vivo embryos were used (i.e. excluding Quality 4). Respiration rates were measured on each embryo by Nanorespirometer technology (Lopes et al. 2005 Reprod. Fertil. Develop. 17, 151). Data were analyzed using Proc Mixed, and values are presented as mean � SEM. Values with different superscripts differ significantly (P < 0.05). The average respiration rates were 0.82 � 0.06a nL/h for in vivo vs. 1.37 � 0.06b nL/h for IVP embryos. The average respiration rates for the different morphological qualities were as follows (nL/h, numbers in brackets): IVP: 2.1 � 0.08a (38), 1.37 � 0.07b (55), 1.08 � 0.07c (48) and 0.62 � 0.11d (19) for Quality 1, 2, 3, and 4, respectively. In vivo: 1.17 � 0.21b,c,e (6), 0.80 � 0.15c,d,e (12), and 0.64 � 0.16d,f (10) for Quality 1, 2, and 3, respectively. The average diameter (mm) of in vivo and IVP embryos was 0.157 � 0.002a and 0.176 � 0.002b, respectively. Respiration rates were directly related to embryo diameter; larger embryos were associated with higher respiration rates (y = 17.55 � 1.32 nL/h � mm, n = 188). Respiration rates of in vivo embryos were significantly lower than those of IVP embryos, regardless of quality. This difference could reflect an effect of the culture conditions on IVP embryos because media components affect embryo metabolism. Moreover, the different ages (day 7 for IVP vs. approximately Day 6.5 for in vivo embryos, because in vivo embryos are less than 7 days after fertilization at recovery) and stages (IVP: up to expanded blastocyst stage; in vivo: morula or early blastocyst stage) could have influenced the results and also partly explain the smaller diameter of the in vivo embryos. Finally, respiration rates decreased proportionately to the morphological quality within embryo type, indicating that morphological differences are reflected at the physiological level. In conclusion, this study further outlines metabolic differences between in vivo and IVP bovine embryos. Whether such differences are a manifestation of metabolic stress associated to the separation from the natural environment or reflect suboptimal culture conditions is yet to be determined. ASL is supported by FCT, Portugal.


2010 ◽  
Vol 22 (1) ◽  
pp. 238
Author(s):  
I. P. Emanuelli ◽  
B. F. Agostinho ◽  
M. P. M. Mancini ◽  
C. M. Barros ◽  
M. F. G. Nogueira

Embryonic chimeras have been used as a tool to understand embryogenesis and organogenesis, as well as to prove, in vivo, the pluripotency of the embryonic stem cells. One of the techniques used to obtain embryonic chimeras is aggregation, which can be performed with intact or half-embryos and in different stages of the development, produced by in vivo or in vitro systems and in different wells. However, its efficiency tends to reduce when advanced stages, such as morulae and blastocysts, are used. The aim of this work was to evaluate the effect of the treatment with an agglutinating agent (phytohemagglutinin-L; PHA) in the percentage of chimeras produced with IVF bovine embryos. Bovine ovaries (from abattoir) were used to obtain 270 COC that were matured in drops (90 μL) of TCM-199 bicarbonate medium, supplemented with 10% of FCS, and incubated in vitro for 22 to 24 h. The fertilization occurred in TALP-IVF medium, and the COC were maintained in the incubator for 18 h. After fertilization, the presumptive zygotes were transferred to SOF culture medium to in vitro culture. In vitro maturation, fertilization, and culture were performed under 38.5°C, 5% CO2 in air and saturated humidity. The chimerism by aggregation was tested between 2 intact (zona-free) 8- to 16-cell stage embryos in the presence (G1, n = 16) or absence of PHA (G2, n = 14) and between one half-morula and one half-blastocyst with (G3, n = 15) or without PHA (G4, n = 12). The embryos in groups G1 and G3 were treated with PHA in a concentration of 500 μLg mL-1 for 3 min. After PHA treatment, the pairs of embryos were allocated in wells, under previously described culture conditions, until expanded blastocyst stage could be observed (Day 7 of culture). At 24 h of culture, embryonic aggregation pairs were first evaluated to detect only cohesive masses of cells. The results (chimerism rate) were 62.5%, 42.9%, 40.0%, and 25.0%, respectively, for groups G1, G2, G3, and G4. There were no significant differences neither among groups (chi-square, P = 0.252) nor between G1 and G2 (P = 0.464), G3, and G4 (P = 0.683; Fisher’s exact test). Main effects as use of PHA (G1 + G3 v. G2 + G4, P = 0.284) and stage of embryos (G1 + G2 v. G3 + G4, P = 0.183; Fisher’s exact test) were not statistically significant. However, when all groups were compared, the power of the performed test (0.354) was below the desired power of 0.800 (i.e. one must be cautious in over-interpreting the lack of difference among them). In the conditions of this study, it was concluded that the treatment with PHA did not increase the rate of aggregation in the embryonic chimera production, even for half-embryos in advanced stage of development (morulae and blastocysts). Granted by FAPESP, Brazil: 06/06491-2 and 07/07705-9 (MFGN) and 07/04291-9 (MPMM).


2009 ◽  
Vol 21 (1) ◽  
pp. 200
Author(s):  
M. Clemente ◽  
A. T. Palasz ◽  
J. de La Fuente ◽  
P. Lonergan ◽  
A. Gutierrez-Adan ◽  
...  

Hyaluronan (HA), which progressively increases during embryogenesis, is a glycosaminoglycan that plays a major role in oocyte/embryo development (Fenderson et al. 1993 Differentiation 54, 85–95). One of the main functions of HA is to participate in the cell proliferation and migration that are controlled by HA receptors, RHAMM and C44, and by the presence of different HA synthases, Has1, Has2, and Has3. All have very distinctive features and functions at different stages of embryo development. The objective of this study was to determine the relative mRNA abundance of HA receptors and synthases in Day 7 and 13 bovine embryos derived in vitro or in vivo. In vitro embryos were produced by standard oocyte maturation and fertilization procedures. Presumptive zygotes were cultured in groups of 25 in 25-μL droplets of synthetic oviduct fluid supplemented with 5% FCS at 39°C, 5% CO2, and 5%O2 with maximum humidity. In vivo blastocysts were collected from superovulated heifers on Day 7 (estrus = Day 0) by uterine flushing and on Day 13 immediately after slaughter by flushing the dissected reproductive tracts. All embryos were frozen in LN2 and stored at –80°C for mRNA extraction. Quantification of transcripts for RHAMM and CD44 receptors and Has2 and Has3 synthases was performed on groups of ten Day 7 blastocysts (3 groups for in vivo or in vitro) and individual Day 13 embryos (7 embryos in vivo or in vitro) by real-time quantitative RT-PCR. Data on differences in transcript abundance were analyzed by ANOVA. The relative abundance of the Has2 and Has3 synthases was similar between in vivo and in vitro embryos, irrespective of their developmental stage. The quantity of CD44 was significantly higher in in vitro compared with in vivo embryos only on Day 7. However, the quantity of RHAMM receptor was higher on Day 13 in in vitro compared with in vivo embryos. When the comparison was done between developmental stages (Day 7 v. Day 13) for in vivo and in vitro embryos, we found that in vivo-produced Day 7 blastocysts expressed significantly more RHAMM receptor than embryos on Day 13. The reverse pattern of expression was shown for CD44 receptor. For in vitro embryos, the only difference observed was for Has3, which was up-regulated on Day 13 compared with Day 7 embryos. In conclusion, the present study demonstrates, for the first time, developmental changes in the abundance of RHAMM and CD44 receptor mRNA and Has2 and Has3 synthase mRNA in in vivo and in vitro bovine-derived embryos on Day 7 and 13. We believe that our results will provide new insight into the potential role of this intriguing multifunctional molecule in bovine early embryo development.


2004 ◽  
Vol 16 (2) ◽  
pp. 243
Author(s):  
A.T.D. Oliveira ◽  
C. Gebert ◽  
R.F.F. Lopes ◽  
H. Niemann ◽  
J.L. Rodrigues

In spite of in vitro embryo production systems having been greatly improved over recent years, employing a variety of culture conditions (media, protein sources, gas atmosphere, etc.), we still do not know much about the real necessity of embryos to develop under the same conditions as occur in vivo. These differences between in vivo and in vitro culture at preimplantation embryonic stages can produce deviations in gene expression and in normal fetal development (large offspring syndrome). Heat shock proteins (Hsp) are engaged in cell response to regulatory signals or perturbations in the microenviroment and can be used as a sensitive indicator of stress caused by suboptimal culture conditions (Wrenzycki et al., 2001Hum. Reprod. 16, 893–901). Hsp act as chaperones in facilitating protein folding and assembly and stabilize damaged proteins to prevent aggregation of fragments, thereby allowing repair or degradation. The aim of the present study was to investigate the effects of different embryo/volume ratios on bovine embryo development and the relative abundance of Hsp 70.1 gene transcripts. In this experiment, oocytes were isolated from slaugterhouse ovaries and matured, fertilized and cultured in groups of 5, 10, 20 or 30 per each drop of 100μL. The oocytes were matured in TCM 199 supplemented with 0.4% BSA. After maturation, oocytes were fertilized in TALP medium, using frozen/thawed sperm, selected using a percoll density gradient. The zygotes were cultured to the morula or Day 7 blastocyst stage employing SOF supplemented with 0.4 % BSA. Developmental check points were cleavage rate (Day 3pi), blastocyst formation (Day 8pi) and hatching (Day 11pi). A semi-quantitative RT-PCR assay was used to determine the relative levels of gene transcripts in single embryos at morula (Day 6) and blastocyst (Day 7) stages (Wrenzycki et al., 2001 Biol. Reprod. 65, 309–317). Data of cleavage, blastocyst formation and hatching rates were analyzed using chi-square test. Relative abundance (RA) of Hsp 70.1mRNA were compared in tested groups using ANOVA followed a Tukey test. Differences at P&lt;0.05 were considered significant. Results show that no significative difference in hatching rate per blastocyst produced was detected among the four groups. Cleavage rate and blastocyst formation were significantly higher in groups with 5, 10 and 20 embryos compared with drops containing 30 embryos. Hsp transcripts were detected in morula and blastocyst stages in all groups. In morula stage, no differences were observed in the RA of Hsp 70.1mRNA among groups with 5, 10, 20 and 30 embryos cultured per drop. However, in blastocyst stage, the RA was significantly increased in the group with 20 embryos per drop as compared to the group with 5 embryos. The results show that different embryo/volume ratios in culture influence not only cleavage rate, blastocyst formation and hatching rate, but also expression of Hsp 70.1 gene. Further studies changing other culture conditions and using in vivo-derived bovine embryos will aid in elucidating which culture systems are ideal to produce bovine embryos in vitro. This research was supported by CAPES/DAAD program and CNPq.


2004 ◽  
Vol 16 (2) ◽  
pp. 242
Author(s):  
P. Lonergan ◽  
D. Rizos ◽  
A. Gutierrez-Adan ◽  
P.M. Moreira ◽  
B. Pintado ◽  
...  

The objective of this study was to examine the time during the post-fertilization culture period that gene expression patterns of in vitro cultured bovine embryos diverge from those of their in vivo cultured counterparts. Presumptive bovine zygotes were produced by IVM/IVF of immature oocytes collected from the ovaries of slaughtered animals. At approximately 20h post-insemination (hpi), presumptive zygotes were randomly divided into two culture groups, either in vitro in synthetic oviduct fluid or in vivo, and transferred into the ewe oviduct. Embryos were recovered from both systems at approximately 30hpi (2-cell), two (4-cell), three (8-cell), four (16-cell), five (early morula), six (compact morula) or seven (blastocyst) days pi and snap-frozen for the analysis of transcript abundance using real-time PCR. The transcripts studied were interferon-tau, apoptosis regulator box-a (Bax), connexin 43, sarcosine oxidase, glucose transporter 5, mitochondrial Mn-superoxide dismutase, insulin-like growth factor II, and insulin-like growth factor-I receptor, most of which are known from our previous work to be differentially transcribed in blastocysts derived from culture in vitro or in vivo. Analysis was done on pools of 10 embryos. Data were analyzed using one-way repeated measures ANOVA. The relative abundance of the transcripts studied varied throughout the preimplantation period and was strongly influenced by the culture environment. For example, transcripts for interferon-tau were detected from the 8-cell stage onwards in in vitro-cultured embryos but not until the early morula stage in those cultured in vivo. Levels of this transcript increased significantly at the compact morula and blastocyst stages in both groups but were significantly higher (P&lt;0.05) in in vitro-cultured embryos at both stages. mRNA for Bax was not detected before the 8-cell stage in in vitro cultured embryos and not until the 16-cell stage in in vivo cultured embryos. The abundance of this transcript increased significantly thereafter up to the blastocyst stage in both groups. The level of expression was significantly higher (P&lt;0.05) at all stages of development in in vitro-cultured embryos than those cultured in vivo. The relative abundance of Cx43 transcripts decreased in both in vitro- and in vivo-cultured embryos at the 8- to 16-cell stage. Levels remained low thereafter in the in vitro-cultured embryos but significantly increased in those cultured in vivo. Transcript abundance was significantly higher in in vivo cultured embryos from Day 4 onwards with a ten-fold difference presence at the blastocyst stage. Differences also existed for the other transcripts studied. These data demonstrate that changes in transcript abundance in blastocyst stage embryos are in many cases a consequence of perturbed transcription earlier in development. Depending on the transcript, these differences may be evident in as short as 10h of culture.


2013 ◽  
Vol 25 (1) ◽  
pp. 265
Author(s):  
K. Knauer ◽  
H. Stinshoff ◽  
S. Wilkening ◽  
C. Wrenzycki

It is known that the progesterone (P4) provided by the corpus luteum is essential for the maintenance of pregnancy. It has been suggested that supplying external P4 in vivo is beneficial to the establishment and upkeep of pregnancy. The aim of the present study was to assess the effects of supplementation with different concentrations of P4 on either of 2 days of in vitro culture (IVC) on early bovine embryo development in an in vitro model. A total of 5073 cumulus–oocyte complexes were matured and fertilized in vitro. Before culture, they were collected in groups of 30 and allocated to 1 of 9 groups. The groups were supplemented with 10, 20, or 100 ng of P4 on Days 4 or 5 of IVC (IVF = Day 0). Alcohol (ETOH) was used as the solvent, so 8 µL of ETOH was used per supplementation. Therefore, two additional groups were supplemented with only ETOH on Day 4 or 5 of IVC. The presumptive zygotes allocated to group 9 were not supplemented. A culture system without oil overlay was used to prevent the lipophilic P4 from moving into the oil. Embryo cleavage and development rates were determined solely on Day 8 of IVC. Single expanded blastocysts were stored at –80°C for RT-qPCR. Subsequently, the relative amounts of six developmentally important gene transcripts (IGF1R, SLC2A1, HSD3B1, IFNT, PGRMC1, and PGRMC2) were analysed in single embryos of all groups. Statistical analysis was performed using one-way and two-way ANOVA, and the level of significance was set at P ≤ 0.05. Cleavage and development rates did not differ among groups (see Table 1). The relative abundance of IGF1R, SLC2A1, PGRMC1, and PGRMC2 was not affected by either the concentration or the timing of P4 supplementation. Nevertheless, there was a statistically significant interaction between the day of treatment and the concentration used for the expression of HSD3B1 mRNA. When 20 ng of P4 was added on Day 5 of IVC, significantly more HSD3B1 transcripts were detected than if 10 ng, 100 ng, or ETOH alone was added. The expression of IFNT was not affected by the day of supplementation, only by the concentration used. Thus, supplementation with 20 ng of P4 resulted in a significantly higher level of transcripts than when 10 ng or ETOH was supplemented. The results indicate that the amount of P4 present during early embryonic development and the timing of its presence had an impact on molecular developmental competence. However, no effects concerning morphological development up to the blastocyst stage could be detected. Table 1.Cleavage and development rates (± SEM) of embryos supplemented with 10, 20, or 100 ng on Day 4 or 5 of in vitro culture (P ≥ 0.05) The financial support of the FBF e.V. is acknowledged.


2010 ◽  
Vol 79 (9) ◽  
pp. S55-S61 ◽  
Author(s):  
Jaroslava Hlavicová ◽  
Miloslava Lopatářová ◽  
Svatopluk Čech

The aim of this study was to establish the effect of two-step vitrification on survival rate of bovine embryos produced in vitro (method A) and in vivo (method B) from Holstein-Friesian cattle. The embryos suitable for vitrification were frozen by a two-step technique, using increasing concentrations of dimethyl sulphoxide (DMSO) and ethylene glycol (EG). After thawing, the quality grade and developmental stage of embryos was assessed. In vitro developmental competence of embryos of different quality grade obtained by method B (n = 82) was significantly higher (p < 0.001) compared to method A (n = 98). The best results were detected when we vitrified the embryos of the grade 1 quality; namely, the hatched blastocyst stage was reached by 6.9% (2/29) of embryos retrieved by method A and by 36.7% (11/30) of embryos retrieved by method B (p < 0.01). In the case of developmental competence of embryos at different developmental stages we reached significantly better results (p < 0.001) when we vitrified the embryos produced by method B (n = 84) in comparison with method A (n = 67). We noted a higher hatching rate at the stage of expanded blastocyst; namely, the hatched blastocyst stage was reached by 7.4% (2/27) of embryos produced by method A and by 30.8% (8/26) of embryos produced by method B (p < 0.05). In general, the hatched blastocyst stage was reached by 15.1% (50/331) of all thawed embryos retrieved by method A and B. In conclusion, when we applied two-step vitrification on the grade 1 quality embryos at the stage of expanded blastocyst produced in vitro or at the stage of morula produced in vivo we achieved the highest hatching rates.


Sign in / Sign up

Export Citation Format

Share Document