scholarly journals Developmental Regulation and In Vitro Culture Effects on Expression of DNA Repair and Cell Cycle Checkpoint Control Genes in Rhesus Monkey Oocytes and Embryos1

2005 ◽  
Vol 72 (6) ◽  
pp. 1359-1369 ◽  
Author(s):  
Ping Zheng ◽  
R. Dee Schramm ◽  
Keith E. Latham
2007 ◽  
Vol 292 (3) ◽  
pp. C1204-C1215 ◽  
Author(s):  
Kamyar Zahedi ◽  
John J. Bissler ◽  
Zhaohui Wang ◽  
Anuradha Josyula ◽  
Lu Lu ◽  
...  

Expression of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia-reperfusion injury (IRI). Increased expression of SSAT in vitro leads to alterations in cellular polyamine content, depletion of cofactors and precursors of polyamine synthesis, and reduced cell proliferation. In our model system, a >28-fold increase in SSAT levels in HEK-293 cells leads to depletion of polyamines and elevation in the enzymatic activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, suggestive of a compensatory reaction to increased polyamine catabolism. Increased expression of SSAT also led to DNA damage and G2 arrest. The increased DNA damage was primarily due to the depletion of polyamines. Other factors such as increased production of H2O2 due to polyamine oxidase activity may play a secondary role in the induction of DNA lesions. In response to DNA damage the ATM/ATR → Chk1/2 DNA repair and cell cycle checkpoint pathways were activated, mediating the G2 arrest in SSAT-expressing cells. In addition, the activation of ERK1 and ERK2, which play integral roles in the G2/M transition, is impaired in cells expressing SSAT. These results indicate that the disruption of polyamine homeostasis due to enhanced SSAT activity leads to DNA damage and reduced cell proliferation via activation of DNA repair and cell cycle checkpoint and disruption of Raf → MEK → ERK pathways. We propose that in kidneys subjected to IRI, one mechanism through which increased expression of SSAT may cause cellular injury and organ damage is through induction of DNA damage and the disruption of cell cycle.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 711-721
Author(s):  
Rochele R Yamamoto ◽  
J Myles Axton ◽  
Yutaka Yamamoto ◽  
Robert D C Saunders ◽  
David M Glover ◽  
...  

Abstract The mutagen-sensitive-101 (mus101) gene of Drosophila melanogaster was first identified 25 years ago through mutations conferring larval hypersensitivity to DNA-damaging agents. Other alleles of mus101 causing different phenotypes were later isolated: a female sterile allele results in a defect in a tissue-specific form of DNA synthesis (chorion gene amplification) and lethal alleles cause mitotic chromosome instability that can be observed genetically and cytologically. The latter phenotype presents as a striking failure of mitotic chromosomes of larval neuroblasts to undergo condensation of pericentric heterochromatic regions, as we show for a newly described mutant carrying lethal allele mus101lcd. To gain further insight into the function of the Mus101 protein we have molecularly cloned the gene using a positional cloning strategy. We report here that mus101 encodes a member of the BRCT (BRCA1 C terminus) domain superfamily of proteins implicated in DNA repair and cell cycle checkpoint control. Mus101, which contains seven BRCT domains distributed throughout its length, is most similar to human TopBP1, a protein identified through its in vitro association with DNA topoisomerase IIβ. Mus101 also shares sequence similarity with the fission yeast Rad4/Cut5 protein required for repair, replication, and checkpoint control, suggesting that the two proteins may be functional homologs.


2002 ◽  
Vol 78 ◽  
pp. S181
Author(s):  
H Asakura ◽  
K.P Katayama ◽  
E.F Stehlik ◽  
J.C Stehlik ◽  
K Winchester-Peden

Cell Cycle ◽  
2018 ◽  
Vol 17 (7) ◽  
pp. 881-891 ◽  
Author(s):  
Sarah M. Misenko ◽  
Dharm S. Patel ◽  
Joonyoung Her ◽  
Samuel F. Bunting

2020 ◽  
Vol 22 ◽  
Author(s):  
Hannah L. Smith ◽  
Harriet Southgate ◽  
Deborah A. Tweddle ◽  
Nicola J. Curtin

Abstract DNA damage response (DDR) pathway prevents high level endogenous and environmental DNA damage being replicated and passed on to the next generation of cells via an orchestrated and integrated network of cell cycle checkpoint signalling and DNA repair pathways. Depending on the type of damage, and where in the cell cycle it occurs different pathways are involved, with the ATM-CHK2-p53 pathway controlling the G1 checkpoint or ATR-CHK1-Wee1 pathway controlling the S and G2/M checkpoints. Loss of G1 checkpoint control is common in cancer through TP53, ATM mutations, Rb loss or cyclin E overexpression, providing a stronger rationale for targeting the S/G2 checkpoints. This review will focus on the ATM-CHK2-p53-p21 pathway and the ATR-CHK1-WEE1 pathway and ongoing efforts to target these pathways for patient benefit.


Sign in / Sign up

Export Citation Format

Share Document