scholarly journals Induction of Muscle Atrophy and Loss of Muscle Function by Gulf‐War Illness Associated Chemicals: Underlying Mechanisms

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Viridiana Navarrete‐Yanez ◽  
Antonio Franco‐Vadillo ◽  
Alejandra Garate‐Carrillo ◽  
Guillermo Ceballos ◽  
Bruce Ito ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Israel Ramirez-Sanchez ◽  
Viridiana Navarrete-Yañez ◽  
Alejandra Garate-Carrillo ◽  
Maria Loredo ◽  
Esmeralda Lira-Romero ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ji-Yun Seo ◽  
Jong-Seol Kang ◽  
Ye Lynne Kim ◽  
Young-Woo Jo ◽  
Ji-Hoon Kim ◽  
...  

AbstractAge-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel Ramirez-Sanchez ◽  
Viridiana Navarrete-Yañez ◽  
Alejandra Garate-Carrillo ◽  
Modesto Lara-Hernandez ◽  
Judith Espinosa-Raya ◽  
...  

AbstractWe examined in a rat model of Gulf War illness (GWI), the potential of (−)-epicatechin (Epi) to reverse skeletal muscle (SkM) atrophy and dysfunction, decrease mediators of inflammation and normalize metabolic perturbations. Male Wistar rats (n = 15) were provided orally with pyridostigmine bromide (PB) 1.3 mg/kg/day, permethrin (PM) 0.13 mg/kg/day (skin), DEET 40 mg/kg/day (skin) and were physically restrained for 5 min/day for 3 weeks. A one-week period ensued to fully develop the GWI-like profile followed by 2 weeks of either Epi treatment at 1 mg/kg/day by gavage (n = 8) or water (n = 7) for controls. A normal, control group (n = 15) was given vehicle and not restrained. At 6 weeks, animals were subjected to treadmill and limb strength testing followed by euthanasia. SkM and blood sampling was used for histological, biochemical and plasma pro-inflammatory cytokine and metabolomics assessments. GWI animals developed an intoxication profile characterized SkM atrophy and loss of function accompanied by increases in modulators of muscle atrophy, degradation markers and plasma pro-inflammatory cytokine levels. Treatment of GWI animals with Epi yielded either a significant partial or full normalization of the above stated indicators relative to normal controls. Plasma metabolomics revealed that metabolites linked to inflammation and SkM waste pathways were dysregulated in the GWI group whereas Epi, attenuated such changes. In conclusion, in a rat model of GWI, Epi partially reverses detrimental changes in SkM structure including modulators of atrophy, inflammation and select plasma metabolites yielding improved function.


2021 ◽  
Author(s):  
Israel Ramirez-Sanchez ◽  
Viridiana Navarrrete ◽  
Alejandra Garate-Carrillo ◽  
Modesto Lara-Hernandez ◽  
Judith Espinosa-Raya ◽  
...  

Abstract We examined in a rat model of Gulf War illness (GWI), the potential of (-)-epicatechin (Epi) to reverse skeletal muscle (SkM) atrophy and dysfunction, decrease mediators of inflammation and normalize metabolic perturbations. Male Wistar rats (n = 15) were provided orally with pyridostigmine bromide (PB) 1.3 mg/kg/day, permethrin (PM) 0.13 mg/kg/day (skin), DEET 40 mg/kg/day (skin) and were physically restrained for 5 min/day for 3 weeks. A one-week period ensued to fully develop the GWI-like profile followed by 2 weeks of either Epi treatment at 1 mg/kg/day by gavage (n = 8) or water (n = 7) for controls. A normal, control group (n = 15) was given vehicles and not restrained. At 6 weeks, animals were subjected to treadmill and limb strength testing followed by euthanasia. SkM and blood sampling was used for histological, biochemical and plasma pro-inflammatory cytokine and metabolomics assessments. GWI animals developed an intoxication profile characterized SkM atrophy and loss of function accompanied by increases in modulators of muscle atrophy, degradation markers and plasma pro-inflammatory cytokine levels. Treatment of GWI animals with Epi yielded either a significant partial or full normalization of the above stated indicators relative to normal controls. Plasma metabolomics revealed that metabolites linked to inflammation and SkM waste pathways were dysregulated in the GWI group whereas Epi, attenuated such changes. In conclusion, in a rat model of GWI, Epi reverses detrimental changes in SkM structure including modulators of atrophy, inflammation and select plasma metabolites yielding improved function.


2006 ◽  
Author(s):  
Katherine N. Nguyen ◽  
Kendal C. Boyd

The Lancet ◽  
2005 ◽  
Vol 365 (9460) ◽  
pp. 635-638 ◽  
Author(s):  
M DEAHL
Keyword(s):  
Gulf War ◽  

Sign in / Sign up

Export Citation Format

Share Document