scholarly journals Artificial sweeteners and dietary disaccharides promote the release of glucagon‐like peptide‐1 in GLUTag cells, an in vitro model of the enteroendocrine cell

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Kirnjot Mehat ◽  
Christopher Corpe
2011 ◽  
Vol 105 (9) ◽  
pp. 1320-1328 ◽  
Author(s):  
Robert E. Steinert ◽  
Florian Frey ◽  
Antonia Töpfer ◽  
Jürgen Drewe ◽  
Christoph Beglinger

In vitro,both carbohydrate sugars and artificial sweeteners (AS) stimulate the secretion of glucagon-like peptide-1 (GLP-1). It has been suggested that the gut tastes sugars and AS through the same mechanisms as the tongue, with potential effects on gut hormone release. We investigated whether the human gut responds in the same way to AS and carbohydrate sugars, which are perceived by lingual taste as equisweet. We focused on the secretion of gastrointestinal (GI) satiety peptides in relation to appetite perception. We performed a placebo-controlled, double-blind, six-way, cross-over trial including twelve healthy subjects. On separate days, each subject received an intragastric infusion of glucose, fructose or an AS (aspartame, acesulfame K and sucralose) dissolved in 250 ml of water or water only (control). In a second part, four subjects received an intragastric infusion of the non-sweet, non-metabolisable sugar analogue 2-deoxy-d-glucose. Glucose stimulated GLP-1 (P = 0·002) and peptide tyrosine tyrosine (PYY;P = 0·046) secretion and reduced fasting plasma ghrelin (P = 0·046), whereas fructose was less effective. Both carbohydrate sugars increased satiety and fullness (albeit not significantly) compared with water. In contrast, equisweet loads of AS did not affect gastrointestinal peptide secretion with minimal effects on appetite. 2-Deoxy-d-glucose increased hunger ratings, however, with no effects on GLP-1, PYY or ghrelin. Our data demonstrate that the secretion of GLP-1, PYY and ghrelin depends on more than the detection of (1) sweetness or (2) the structural analogy to glucose.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document