enteroendocrine cell
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 24)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Takumi Kitamoto ◽  
Yun-Kyoung Lee ◽  
Wendy M. McKimpson ◽  
Hitoshi Watanabe ◽  
Nishat Sultana ◽  
...  

Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive β-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate β-like gut cells. Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced β-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by small molecule FoxO1 inhibitor, Cpd10. Cpd10 induced β-like cells that released insulin in response to glucose in mouse gut organoids, and this effect was strengthened by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced insulin-immunoreactive β-like cells in the gut, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. These results provide proof of principle of gut cell conversion into β-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.


2021 ◽  
Author(s):  
Zachary A Knight ◽  
Ling Bai ◽  
Nilla Sivakumar ◽  
Sheyda Mesgarzadeh ◽  
Tom Ding ◽  
...  

Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.


2021 ◽  
Vol 3 (9) ◽  
pp. 1202-1216
Author(s):  
Alexandra Aliluev ◽  
Sophie Tritschler ◽  
Michael Sterr ◽  
Lena Oppenländer ◽  
Julia Hinterdobler ◽  
...  

AbstractExcess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr–Igf1r–Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuto Yoshinari ◽  
Hina Kosakamoto ◽  
Takumi Kamiyama ◽  
Ryo Hoshino ◽  
Rena Matsuoka ◽  
...  

AbstractThe enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.


2021 ◽  
Author(s):  
Yuto Yoshinari ◽  
Hina Kosakamoto ◽  
Takumi Kamiyama ◽  
Ryo Hoshino ◽  
Rena Matsuoka ◽  
...  

The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, Neuropeptide F (NPF), acts as the sugar-responsive, an incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.


2021 ◽  
Author(s):  
Ting-Ting Huang ◽  
Pan-Pan Gu ◽  
Ting Zheng ◽  
Ling-Shan Gou ◽  
Yao-Wu Liu

Piperine is reported to ameliorate common metabolic diseases, however, the molecular mechanism is still unclear. In the present study, we examined whether piperine could stimulate glucagon-like peptide-1 (GLP-1) secretion in...


2020 ◽  
Vol 11 ◽  
Author(s):  
Amisha Modasia ◽  
Aimee Parker ◽  
Emily Jones ◽  
Regis Stentz ◽  
Arlaine Brion ◽  
...  

2020 ◽  
Vol 41 (5) ◽  
pp. 695-706
Author(s):  
Joep Beumer ◽  
Helmuth Gehart ◽  
Hans Clevers

Abstract The recent intersection of enteroendocrine cell biology with single-cell technologies and novel in vitro model systems has generated a tremendous amount of new data. Here we highlight these recent developments and explore how these findings contribute to the understanding of endocrine lineages in the gut. In particular, the concept of hormonal plasticity, the ability of endocrine cells to produce different hormones over the course of their lifetime, challenges the classic notion of cell types. Enteroendocrine cells travel in the course of their life through different signaling environments that directly influence their hormonal repertoire. In this context, we examine how enteroendocrine cell fate is determined and modulated by signaling molecules such as bone morphogenetic proteins (BMPs) or location along the gastrointestinal tract. We analyze advantages and disadvantages of novel in vitro tools, adult stem cell or iPS-derived intestinal organoids, that have been crucial for recent findings on enteroendocrine development and plasticity. Finally, we illuminate the future perspectives of the field and discuss how understanding enteroendocrine plasticity can lead to new therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document