scholarly journals TRPV4 regulates P. gingivalis lipopolysaccharide‐induced exacerbation of oxidized LDL‐mediated foam cell formation

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Shaik Rahaman ◽  
Nabyendu Gupta ◽  
Rishov Goswami
Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 715
Author(s):  
Jae-Yong Kim ◽  
Soonok Kim ◽  
Sang Hee Shim

An endophytic fungus, Neofusicoccum parvum JS-0968, was isolated from a plant, Vitex rotundifolia. The chemical investigation of its cultures led to the isolation of a secondary metabolite, (3R)-5-hydroxymellein. It has been reported to have antifungal, antibacterial, and antioxidant activity, but there have been no previous reports on the effects of (3R)-5-hydroxymellein on atherosclerosis. The oxidation of lipoproteins and foam cell formation have been known to be significant in the development of atherosclerosis. Therefore, we investigated the inhibitory effects of (3R)-5-hydroxymellein on atherosclerosis through low-density lipoprotein (LDL) and high-density lipoprotein (HDL) oxidation and macrophage foam cell formation. LDL and HDL oxidation were determined by measuring the production of conjugated dienes and malondialdehyde, the amount of hyperchromicity and carbonyl content, conformational changes, and anti-LDL oxidation. In addition, the inhibition of foam cell formation was measured by Oil red O staining. As a result, (3R)-5-hydroxymellein suppressed the oxidation of LDL and HDL through the inhibition of lipid peroxidation, the decrease of negative charges, the reduction of hyperchromicity and carbonyl contents, and the prevention of apolipoprotein A-I (ApoA-I) aggregation and apoB-100 fragmentation. Furthermore, (3R)-5-hydroxymellein significantly reduced foam cell formation induced by oxidized LDL (oxLDL). Taken together, our data show that (3R)-5-hydroxymellein could be a potential preventive agent for atherosclerosis via obvious anti-LDL and HDL oxidation and the inhibition of foam cell formation.


2020 ◽  
Vol 61 (3) ◽  
pp. 351-364 ◽  
Author(s):  
Amit Kumar ◽  
Priya Gupta ◽  
Minakshi Rana ◽  
Tulika Chandra ◽  
Madhu Dikshit ◽  
...  

Pyruvate kinase M2 (PKM2) links metabolic and inflammatory dysfunction in atherosclerotic coronary artery disease; however, its role in oxidized LDL (Ox-LDL)-induced macrophage foam cell formation and inflammation is unknown and therefore was studied. In recombinant mouse granulocyte-macrophage colony-stimulating factor-differentiated murine bone marrow-derived macrophages, early (1–6 h) Ox-LDL treatment induced PKM2 tyrosine 105 phosphorylation and promotes its nuclear localization. PKM2 regulates aerobic glycolysis and inflammation because PKM2 shRNA or Shikonin abrogated Ox-LDL-induced hypoxia-inducible factor-1α target genes lactate dehydrogenase, glucose transporter member 1, interleukin 1β (IL-1β) mRNA expression, lactate, and secretory IL-1β production. PKM2 inhibition significantly increased Ox-LDL-induced ABCA1 and ABCG1 protein expression and NBD-cholesterol efflux to apoA1 and HDL. PKM2 shRNA significantly inhibited Ox-LDL-induced CD36, FASN protein expression, DiI-Ox-LDL binding and uptake, and cellular total cholesterol, free cholesterol, and cholesteryl ester content. Therefore, PKM2 regulates lipid uptake and efflux. DASA-58, a PKM2 activator, downregulated LXR-α, ABCA1, and ABCG1, and augmented FASN and CD36 protein expression. Peritoneal macrophages showed similar results. Ox-LDL induced PKM2- SREBP-1 interaction and FASN expression in a PKM2-dependent manner. Therefore, this study suggests a role for PKM2 in Ox-LDL-induced aerobic glycolysis, inflammation, and macrophage foam cell formation.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huan Tao ◽  
Patricia G Yancey ◽  
John L Blakemore ◽  
Youmin Zhang ◽  
Lei Ding ◽  
...  

Background: Autophagy modulates vascular cell lipid metabolism, lipid droplet turnover, foam cell formation, cell survival and death, and inflammation. Scavenger receptor class B type I (SR-BI) deficiency causes impaired lysosome function in macrophages and erythrocytes. Methods and Results: Bone marrow transplantation studies were performed in ApoE and LDLR deficient mice to examine the effects of hematopoietic SR-BI deletion on atherosclerotic lesion autophagy. In addition, in vitro studies compared WT versus SR-BI -/- macrophages. Under conditions of cholesterol induced stress, the mRNA and protein levels of critical autophagy players including ATG5, ATG6/Belcin-1, ATG7 and LC3II were decreased by 37.8% to 84.6% (P<0.05 to 0.01) in SR-B1 -/- macrophages and atherosclerotic aortic tissue compared to controls. Electron microscopic analysis showed that SR-BI -/- versus WT macrophages had 80% fewer (P<0.05) autophagsomes in response to cholesterol enrichment. Macrophage SR-BI deficiency led to 1.8-fold (P<0.05) more lipid deposition and 2.5-fold more (P<0.01) apoptosis in response to oxidized LDL. Furthermore, hematopoietic SR-BI deletion caused 2.3 fold (P<0.05) more cell death in aortic atherosclerotic lesions compared to the WT control. Pharmacologic activation of autophagy did not reduce the levels of lipid droplets or cell apoptosis in SR-BI null macrophages vs WT control. WT peritoneal macrophages were used to examine SR-BI subcellular distribution and its interaction with VPS34/Beclin-1. In response to induction of autophagy, macrophage SR-BI was expressed in lysosomes and co-localized with LC3-II. Furthermore, we found that SR-BI directly interacted with the VPS34/Beclin-1 complex. Conclusions: SR-BI deficiency leads to defective autophagy and accelerates macrophage foam cell formation and apoptosis in experimental mouse atherosclerotic lesions. Macrophage SR-BI regulates expression of critical autophagy players and directly modulates autophagy via the VPS34/Beclin-1 pathway, identifying novel targets for the treatment of atherosclerosis.


2010 ◽  
Vol 17 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Chiari Kojima ◽  
Jun Ino ◽  
Hideto Ishii ◽  
Kosaku Nitta ◽  
Masayuki Yoshida

2014 ◽  
Vol 55 (8) ◽  
pp. 1648-1656 ◽  
Author(s):  
Jason M. Meyer ◽  
Ailing Ji ◽  
Lei Cai ◽  
Deneys R. van der Westhuyzen

2012 ◽  
Vol 40 (05) ◽  
pp. 967-978 ◽  
Author(s):  
Bidur Bhandary ◽  
Geum-Hwa Lee ◽  
Byung-Ok So ◽  
Sun-Young Kim ◽  
Min-Gul Kim ◽  
...  

Oxidized low-density lipoprotein (oxLDL) contributes to atherosclerosis in part by being taken up into macrophages via scavenger receptors and leading to foam cell formation. Herbal compounds that have been used to treat blood stasis (a counterpart of atherosclerosis) for centuries include extracts of medicinal plants in the Rosaceae and Leguminosae families. In this study, we investigated the effect of the unripe Rubus coreanus (Korean black raspberry) fruit extract on oxLDL uptake by murine macrophage cells. In the presence of Rubus coreanus extract (RCE), Dil-labeled oxLDL uptake was inhibited in a dose-dependent manner. SP600125, a specific JNK inhibitor, inhibited the uptake of Dil-oxLDL into macrophages. RCE also inhibited JNK phosphorylation in a time- and dose-dependent manner in macrophages treated with oxLDL. These results indicate that among the mitogen-activated protein kinases, JNK phosphorylation is inhibited by RCE, which is likely the mechanism underlying the RCE-induced inhibition of oxLDL uptake by macrophages.


2004 ◽  
Vol 46 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Bente Halvorsen ◽  
Torgun Wæhre ◽  
Hanne Scholz ◽  
Ole Petter Clausen ◽  
Jan H. von der Thüsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document