scholarly journals Macromolecular crowding modulates actin bundle formation induced by actin crosslinking proteins

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Jinho Park ◽  
Myeongsang Lee ◽  
Hyeran Kang
2021 ◽  
Vol 120 (3) ◽  
pp. 160a
Author(s):  
Nicholas Castaneda ◽  
Briana Lee ◽  
Jinho Park ◽  
Laurene Tetard ◽  
Ellen H. Kang

2021 ◽  
Vol 9 ◽  
Author(s):  
Nicholas Castaneda ◽  
Jinho Park ◽  
Ellen Hyeran Kang

The mechanical and structural properties of actin cytoskeleton drive various cellular processes, including structural support of the plasma membrane and cellular motility. Actin monomers assemble into double-stranded helical filaments as well as higher-ordered structures such as bundles and networks. Cells incorporate macromolecular crowding, cation interactions, and actin-crosslinking proteins to regulate the organization of actin bundles. Although the roles of each of these factors in actin bundling have been well-known individually, how combined factors contribute to actin bundle assembly, organization, and mechanics is not fully understood. Here, we describe recent studies that have investigated the mechanisms of how intracellular environmental factors influence actin bundling. This review highlights the effects of macromolecular crowding, cation interactions, and actin-crosslinking proteins on actin bundle organization, structure, and mechanics. Understanding these mechanisms is important in determining in vivo actin biophysics and providing insights into cell physiology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nicholas Castaneda ◽  
Cecile Feuillie ◽  
Michael Molinari ◽  
Ellen Hyeran Kang

The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization.


Author(s):  
J. Jakana ◽  
M.F. Schmid ◽  
P. Matsudaira ◽  
W. Chiu

Actin is a protein found in all eukaryotic cells. In its polymerized form, the cells use it for motility, cytokinesis and for cytoskeletal support. An example of this latter class is the actin bundle in the acrosomal process from the Limulus sperm. The different functions actin performs seem to arise from its interaction with the actin binding proteins. A 3-dimensional structure of this macromolecular assembly is essential to provide a structural basis for understanding this interaction in relationship to its development and functions.


Author(s):  
Aleksey A. Nikitin ◽  
Anton Yu. Yurenya ◽  
Raul R. Gabbasov ◽  
Valeriy M. Cherepanov ◽  
Mikhail A. Polikarpov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document