PEG‐asparaginase‐induced hepatic steatosis is associated with PKA activation and white adipose tissue lipolysis

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Gundala Venkata Naveen Kumar ◽  
Manda J. Ramsey ◽  
Sanjay Rathod ◽  
Christian Fernandez
2021 ◽  
Author(s):  
Shigeru Murakami ◽  
Chihiro Hirazawa ◽  
Rina Yoshikawa ◽  
Toshiki Mizutani ◽  
Takuma Ohya ◽  
...  

Abstract Background: The obesity epidemic has become a serious public health problem in many countries worldwide. Seaweed has few calories and is rich in active nutritional components necessary for health promotion and disease prevention. The aim of this study was to investigate the effects of the Campylaephora hypnaeoides J. Agardh (C. hypnaeoides), an edible seaweed traditionally eaten in Japan, on high-fat (HF) diet-induced obesity and related metabolic diseases in mice.Methods: Male C57BL/6J mice were randomly divided into the following groups: normal diet group, HF diet group, HF diet supplemented with 2% C. hypnaeoides, and HF diet supplemented with 6% C. hypnaeoides. After 13 weeks of treatment, the weight of the white adipose tissue and liver, and the serum levels of glucose, insulin, adipokines, and lipids were measured. Hepatic levels of adipokines, oxidant markers, and antioxidant markers were also determined. Insulin resistance was assessed by a glucose tolerance test. Polysaccharides of C. hypnaeoides were purified and their molecular weight was determined by high-performance seize exclusion chromatography. The anti-inflammatory effects of purified polysaccharides were evaluated in RAW264.7 cells. Results: Treatment of HF diet-induced obese mice with C. hypnaeoides for 13 weeks suppressed the increase in body weight and white adipose tissue weight. It also ameliorated insulin resistance, diabetes, hepatic steatosis, and hypercholesterolemia. The ingestion of an HF diet increased serum levels of malondialdehyde (MDA), tumor necrosis factor a (TNF-a), and monocyte chemoattractant protein-1 (MCP-1), while it decreased serum adiponectin levels. In the liver, an HF diet markedly increased the MDA, TNF-a, and interleukin-6 (IL-6) levels, while it decreased glutathione (GSH) and superoxide dismutase (SOD). These metabolic changes induced by HF diet feeding were ameliorated by dietary C. hypnaeoides. Purified polysaccharides and ethanol extract from C. hypnaeoides inhibited the lipopolysaccharide-induced overproduction of nitric oxide and TNF-a in macrophage RAW264.7 cells. Conclusions: The present results indicated that C. hypnaeoides was able to alleviate HF diet-induced metabolic disorders, including obesity, diabetes, hepatic steatosis, and hypercholesterolemia by attenuating inflammation and improving the antioxidant capacity in mice. Polysaccharides and polyphenols may be involved in these beneficial effects of C. hypnaeoides.


1998 ◽  
Vol 273 (22) ◽  
pp. 13475-13481 ◽  
Author(s):  
Nicolas Gaudiot ◽  
Anne-Marie Jaubert ◽  
Elisabeth Charbonnier ◽  
Dominique Sabourault ◽  
Danièle Lacasa ◽  
...  

2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Abdikarim Abdullahi ◽  
Osai Samadi ◽  
Christopher Auger ◽  
Tharsan Kanagalingam ◽  
Darren Boehning ◽  
...  

AbstractBurn patients experiencing hypermetabolism develop hepatic steatosis, which is associated with liver failure and poor outcomes after the injury. These same patients also undergo white adipose tissue (WAT) browning, which has been implicated in mediating post-burn cachexia and sustained hypermetabolism. Despite the clinical presentation of hepatic steatosis and WAT browning in burns, whether or not these two pathological responses are linked remains poorly understood. Here, we show that the burn-induced WAT browning and its associated increased lipolysis leads to the accelerated development of hepatic steatosis in mice. Deletion of interleukin 6 (IL-6) and the uncoupling protein 1 (UCP1), regulators of burn-induced WAT browning completely protected mice from hepatic steatosis after the injury. Treatment of post-burn mice with propranolol or IL-6 receptor blocker attenuated burn-induced WAT browning and its associated hepatic steatosis pathology. Lipidomic profiling in the plasma of post-burn mice and burn patients revealed elevated levels of damage-inducing lipids (palmitic and stearic acids), which induced hepatic endoplasmic reticulum (ER) stress and compromised hepatic fat oxidation. Mechanistically, we show that hepatic ER stress after a burn injury leads to a greater ER-mitochondria interaction, hepatocyte apoptosis, oxidative stress, and impaired fat oxidation. Collectively, our findings uncover an adverse “cross-talk” between the adipose and liver tissue in the context of burn injury, which is critically mediated by WAT browning.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jong-Gil Park ◽  
Xu Xu ◽  
Sungyun Cho ◽  
Kyu Yeon Hur ◽  
Myung-Shik Lee ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Su-Jung Cho ◽  
Un Ju Jung ◽  
Hae-Jin Park ◽  
Hye-Jin Kim ◽  
Yong Bok Park ◽  
...  

The aim of this study was to evaluate the long-term effects of grape pomace ethanol extract (GPE) with or without omija fruit ethanol extract (OFE) on adiposity, hepatic steatosis, and inflammation in diet-induced obese mice. Male C57BL/6J mice were fed a high-fat diet (HFD) as the control diet and HFD plus GPE (0.5%, w/w) with or without OFE (0.05%, w/w) as the experimental diet for 12 weeks. GPE alone did not significantly affect adipogenesis and hepatic steatosis. However, the supplementation of GPE + OFE significantly lowered body weight gain, white adipose tissue weight, adipocyte size, and plasma free fatty acid and adipokines (leptin, PAI-1, IL-6, and MCP-1) levels in HFD-fed mice compared to those of the control group. These beneficial effects of GPE + OFE were partly related to the decreased expression of lipogenic and inflammatory genes in white adipose tissue. GPE + OFE supplementation also significantly lowered liver weight and ameliorated fatty liver by inhibiting expression of hepatic genes involved in fatty acid and cholesterol syntheses as well as inflammation and by activating hepatic fatty acid oxidation. These findings suggest that the combined ethanol extract of grape pomace and omija fruit has the potential to improve adiposity and fatty liver in diet-induced obese mice.


Sign in / Sign up

Export Citation Format

Share Document