scholarly journals Intraoperative Hemidiaphragm Stimulation Offsets Slow‐Twitch Muscle Fiber Atrophy and Contractile Dysfunction

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Guilherme Bresciani ◽  
Robert Mankowski ◽  
Leonardo Ferreira ◽  
Christiaan Leeuwenburgh ◽  
George Arnaoutakis ◽  
...  
Author(s):  
Wanxue Wen ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

2011 ◽  
Vol 26 (3) ◽  
pp. 987-1000 ◽  
Author(s):  
Sarah A. Reed ◽  
Pooja B. Sandesara ◽  
Sarah M. Senf ◽  
Andrew R. Judge

2012 ◽  
Vol 52 (11) ◽  
pp. 1315-1317
Author(s):  
Ikuya Nonaka

2010 ◽  
Vol 298 (1) ◽  
pp. C38-C45 ◽  
Author(s):  
Sarah M. Senf ◽  
Stephen L. Dodd ◽  
Andrew R. Judge

The purpose of the current study was to determine whether heat shock protein 70 (Hsp70) directly regulates forkhead box O (FOXO) signaling in skeletal muscle. This aim stems from previous work demonstrating that Hsp70 overexpression inhibits disuse-induced FOXO transactivation and prevents muscle fiber atrophy. However, although FOXO is sufficient to cause muscle wasting, no data currently exist on the requirement of FOXO signaling in the progression of physiological muscle wasting, in vivo. In the current study we show that specific inhibition of FOXO, via expression of a dominant-negative FOXO3a, in rat soleus muscle during disuse prevented >40% of muscle fiber atrophy, demonstrating that FOXO signaling is required for disuse muscle atrophy. Subsequent experiments determined whether Hsp70 directly regulates FOXO3a signaling when independently activated in skeletal muscle, via transfection of FOXO3a. We show that Hsp70 inhibits FOXO3a-dependent transcription in a gene-specific manner. Specifically, Hsp70 inhibited FOXO3a-induced promoter activation of atrogin-1, but not MuRF1. Further studies showed that a FOXO3a DNA-binding mutant can activate MuRF1, but not atrogin-1, suggesting that FOXO3a activates these two genes through differential mechanisms. In summary, FOXO signaling is required for physiological muscle atrophy and is directly inhibited by Hsp70.


2007 ◽  
Vol 292 (1) ◽  
pp. E151-E157 ◽  
Author(s):  
Lex B. Verdijk ◽  
René Koopman ◽  
Gert Schaart ◽  
Kenneth Meijer ◽  
Hans H. C. M. Savelberg ◽  
...  

Satellite cells (SC) are essential for skeletal muscle growth and repair. Because sarcopenia is associated with type II muscle fiber atrophy, we hypothesized that SC content is specifically reduced in the type II fibers in the elderly. A total of eight elderly (E; 76 ± 1 yr) and eight young (Y; 20 ± 1 yr) healthy males were selected. Muscle biopsies were collected from the vastus lateralis in both legs. ATPase staining and a pax7-antibody were used to determine fiber type-specific SC content (i.e., pax7-positive SC) on serial muscle cross sections. In contrast to the type I fibers, the proportion and mean cross-sectional area of the type II fibers were substantially reduced in E vs. Y. The number of SC per type I fiber was similar in E and Y. However, the number of SC per type II fiber was substantially lower in E vs. Y (0.044 ± 0.003 vs. 0.080 ± 0.007; P < 0.01). In addition, in the type II fibers, the number of SC relative to the total number of nuclei and the number of SC per fiber area were also significantly lower in E. This study is the first to show type II fiber atrophy in the elderly to be associated with a fiber type-specific decline in SC content. The latter is evident when SC content is expressed per fiber or per fiber area. The decline in SC content might be an important factor in the etiology of type II muscle fiber atrophy, which accompanies the loss of skeletal muscle with aging.


2004 ◽  
Vol 36 (Supplement) ◽  
pp. S332
Author(s):  
John P. Mattson ◽  
Michael D. Delp ◽  
David C. Poole

Sign in / Sign up

Export Citation Format

Share Document