neuromotor control
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Victor Munoz-Martel ◽  
Alessandro Santuz ◽  
Sebastian Bohm ◽  
Adamantios Arampatzis

Stability training in the presence of perturbations is an effective means of increasing muscle strength, improving reactive balance performance, and reducing fall risk. We investigated the effects of perturbations induced by an unstable surface during single-leg landings on the mechanical loading and modular organization of the leg muscles. We hypothesized a modulation of neuromotor control when landing on the unstable surface, resulting in an increase of leg muscle loading. Fourteen healthy adults performed 50 single-leg landings from a 30 cm height onto two ground configurations: stable solid ground (SG) and unstable foam pads (UG). Ground reaction force, joint kinematics, and electromyographic activity of 13 muscles of the landing leg were measured. Resultant joint moments were calculated using inverse dynamics and muscle synergies with their time-dependent (motor primitives) and time-independent (motor modules) components were extracted via non-negative matrix factorization. Three synergies related to the touchdown, weight acceptance, and stabilization phase of landing were found for both SG and UG. When compared with SG, the motor primitive of the touchdown synergy was wider in UG (p < 0.001). Furthermore, in UG the contribution of gluteus medius increased (p = 0.015) and of gastrocnemius lateralis decreased (p < 0.001) in the touchdown synergy. Weight acceptance and stabilization did not show any statistically significant differences between the two landing conditions. The maximum ankle and hip joint moment as well as the rate of ankle, knee, and hip joint moment development were significantly lower (p < 0.05) in the UG condition. The spatiotemporal modifications of the touchdown synergy in the UG condition highlight proactive adjustments in the neuromotor control of landings, which preserve reactive adjustments during the weight acceptance and stabilization synergies. Furthermore, the performed proactive control in combination with the viscoelastic properties of the soft surface resulted in a reduction of the mechanical loading in the lower leg muscles. We conclude that the use of unstable surfaces does not necessarily challenge reactive motor control nor increase muscle loading per se. Thus, the characteristics of the unstable surface and the dynamics of the target task must be considered when designing perturbation-based interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Theodoros Bermperidis ◽  
Richa Rai ◽  
Jihye Ryu ◽  
Damiano Zanotto ◽  
Sunil K. Agrawal ◽  
...  

AbstractTraditional clinical approaches diagnose disorders of the nervous system using standardized observational criteria. Although aiming for homogeneity of symptoms, this method often results in highly heterogeneous disorders. A standing question thus is how to automatically stratify a given random cohort of the population, such that treatment can be better tailored to each cluster’s symptoms, and severity of any given group forecasted to provide neuroprotective therapies. In this work we introduce new methods to automatically stratify a random cohort of the population composed of healthy controls of different ages and patients with different disorders of the nervous systems. Using a simple walking task and measuring micro-fluctuations in their biorhythmic motions, we combine non-linear causal network connectivity analyses in the temporal and frequency domains with stochastic mapping. The methods define a new type of internal motor timings. These are amenable to create personalized clinical interventions tailored to self-emerging clusters signaling fundamentally different types of gait pathologies. We frame our results using the principle of reafference and operationalize them using causal prediction, thus renovating the theory of internal models for the study of neuromotor control.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Joline Brandenburg ◽  
Alyssa Brown ◽  
Matthew Fogarty ◽  
Gary Sieck

2020 ◽  
Vol 7 (9) ◽  
pp. 200111
Author(s):  
Pietro Morasso

This study proposes a generalization of the ankle and hip postural strategies to be applied to the large class of skills that share the same basic challenge of defeating the destabilizing effect of gravity on the basis of the same neuromotor control organization, adapted and specialized to a variable number of degrees of freedom, different body parts, different muscles and different sensory feedback channels. In all the cases, we can identify two crucial elements (the CoP, centre of pressure and the CoM, centre of mass) and the central point of the paper is that most balancing skills can be framed in the CoP–CoM interplay and can be modelled as a combination/alternation of two basic stabilization strategies: the standard well-investigated COPS (or CoP stabilization strategy, the default option), where the CoM is the controlled variable and the CoP is the control variable, and the less investigated COMS (or CoM stabilization strategy), where CoP and CoM must exchange their role because the range of motion of the CoP is strongly constrained by environmental conditions. The paper focuses on the tightrope balancing skill where sway control in the sagittal plane is modelled in terms of the COPS while the more challenging sway in the coronal plane is modelled in terms of the COMS, with the support of a suitable balance pole. Both stabilization strategies are implemented as state-space intermittent, delayed feedback controllers, independent of each other. Extensive simulations support the degree of plausibility, generality and robustness of the proposed approach.


2020 ◽  
Vol 123 (5) ◽  
pp. 1682-1690 ◽  
Author(s):  
Joline E. Brandenburg ◽  
Matthew J. Fogarty ◽  
Alyssa D. Brown ◽  
Gary C. Sieck

Phrenic motor neuron (PhMN) development in early onset hypertonia is poorly understood. Yet, respiratory disorders are a common cause of morbidity and mortality. In spa mice, an animal model of early onset hypertonia, we found ~30% fewer PhMNs, compared with controls. This PhMN loss disproportionately affected larger PhMNs. Thus, the number and heterogeneity of the PhMN pool are decreased in spa mice, likely contributing to the hypertonia, impaired neuromotor control, and respiratory disorders.


2020 ◽  
Vol 238 (5) ◽  
pp. 1285-1292
Author(s):  
William P. Berg ◽  
Michael R. Hughes

2020 ◽  
Vol 14 (5) ◽  
pp. 453-464 ◽  
Author(s):  
Matthew J. Fogarty ◽  
Gary C. Sieck

2020 ◽  
Author(s):  
Blake Johnson ◽  
Qinqing Meng ◽  
Ioanna Anastasopoulou ◽  
Louise Ratko ◽  
Tunde Szalay ◽  
...  

AbstractArticulography and functional neuroimaging are two major tools for studying the neurobiology of speech production. Until now, however, it has generally not been possible to use both in the same experimental setup because of technical incompatibilities between the two methodologies. Here we describe results from a novel articulography system dubbed Magneto-articulography for the Assessment of Speech Kinematics (MASK), used for the first time to obtain kinematic profiles of oro-facial movements during speech together with concurrent magnetoencephalographic (MEG) measurements of neuromotor brain activity. MASK was used to characterise speech kinematics in a healthy adult, and the results were compared to measurements from the same participant with a conventional electromagnetic articulography (EMA) setup. We also characterised speech movement kinematics with MASK in a group of ten typically developing children, aged 8-12 years. Analyses targeted the gestural landmarks of the utterances /ida/, /ila/ and reiterated productions of /pataka/. These results demonstrate that the MASK technique can be used to reliably characterise movement profiles and kinematic parameters that reflect development of speech motor control, together with MEG measurements of brain responses from speech sensorimotor cortex. This new capability sets the stage for cross-disciplinary efforts to understand the developmental neurobiology of human speech production.


2020 ◽  
Vol 22 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Shi-chun Bao ◽  
Ahsan Khan ◽  
Rong Song ◽  
Raymond Kai-yu Tong

Electrical stimulation has been extensively applied in post-stroke motor restoration, but its treatment mechanisms are not fully understood. Stimulation of neuromotor control system at multiple levels manipulates the corresponding neuronal circuits and results in neuroplasticity changes of stroke survivors. This rewires the lesioned brain and advances functional improvement. This review addresses the therapeutic mechanisms of different stimulation modalities, such as noninvasive brain stimulation, peripheral electrical stimulation, and other emerging techniques. The existing applications, the latest progress, and future directions are discussed. The use of electrical stimulation to facilitate post-stroke motor recovery presents great opportunities in terms of targeted intervention and easy applicability. Further technical improvements and clinical studies are required to reveal the neuromodulatory mechanisms and to enhance rehabilitation therapy efficiency in stroke survivors and people with other movement disorders.


Sign in / Sign up

Export Citation Format

Share Document