scholarly journals IDENTIFICATION AND CHARACTERIZATION OF BRANCHED‐CHAIN AMINO ACID (BCAA) METABOLON PROTEINS: ROLE OF GLUTAMATE DEHYDROGENASE

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Mohammad Mainul Islam ◽  
Manisha Nautiyal ◽  
James Mobley ◽  
Susan Hutson
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ieva Antanavičiūtė ◽  
Valeryia Mikalayeva ◽  
Ieva Ceslevičienė ◽  
Gintarė Milašiūtė ◽  
Vytenis Arvydas Skeberdis ◽  
...  

2020 ◽  
Author(s):  
Kang Wang ◽  
Zhengyang Zhang ◽  
Tsai Hsiang-i ◽  
Yanfang Liu ◽  
Ming Wang ◽  
...  

AbstractFerroptosis has been implicated as a tumor-suppressor function for cancer therapy. Recently the sensitivity to ferroptosis was tightly linked to numerous biological processes, including metabolism of amino acid. Here, using a high-throughput CRISPR/Cas9 based genetic screen in HepG2 cells to search for metabolic proteins inhibiting ferroptosis, we identified branched chain amino acid aminotransferase 2 (BCAT2) as a novel suppressor of ferroptosis. Mechanistically, ferroptosis inducers (erastin, sorafenib and sulfasalazine) activated AMPK/SREBP1 signaling pathway through ferritinophagy, which in turn inhibited BCAT2 transcription. We further confirmed that BCAT2 mediating the metabolism of sulfur amino acid, regulated intracellular glutamate level, whose activation by ectopic expression specifically antagonize system Xc– inhibition and protected liver and pancreatic cancer cells from ferroptosis in vitro and in vivo. Finally, our results demonstrate the synergistic effect of sorafenib and sulfasalazine in downregulating BCAT2 expression and dictating ferroptotic death, where BCAT2 can also be used to predict the responsiveness of cancer cells to ferroptosis-inducing therapies. Collectively, these findings identify a novel role of BCAT2 in ferroptosis, suggesting a potential therapeutic strategy for overcoming sorafenib resistance.


Sign in / Sign up

Export Citation Format

Share Document