scholarly journals Endothelial function and vascular oxidative stress in long‐lived GH/IGF‐deficient Ames dwarf mice

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Zoltan Ungvari ◽  
Nazar Labinskyy ◽  
Andrej Podlutsky ◽  
Steven Austad ◽  
Partha Mukhopadhyay ◽  
...  
2008 ◽  
Vol 295 (5) ◽  
pp. H1882-H1894 ◽  
Author(s):  
Anna Csiszar ◽  
Nazar Labinskyy ◽  
Viviana Perez ◽  
Fabio A. Recchia ◽  
Andrej Podlutsky ◽  
...  

Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.


2010 ◽  
Vol 45 (12) ◽  
pp. 936-949 ◽  
Author(s):  
Sunita Sharma ◽  
Sharlene Rakoczy ◽  
Kristine Dahlheimer ◽  
Holly Brown-Borg

2001 ◽  
Vol 169 (2) ◽  
pp. 389-396 ◽  
Author(s):  
A Perez-Romero ◽  
E Dialynas ◽  
F Salame ◽  
A Amores ◽  
L Vidarte ◽  
...  

High local GH-releasing hormone (GHRH) levels are capable of inducing transdifferentiation in salivary cells to synthesize GH. However, the factors implicated in this process remain unknown. To study this subject, normal and Ames dwarf mice were implanted in the submaxillary gland with a slow release pellet releasing 21 microgram GHRH (1-29)-NH(2)/day for 2 months. Control animals received placebo pellets at the same site. After 60 days, heart blood was collected and submaxillary glands were removed. Circulating levels of GH and IGF-I were significantly decreased (P<0.05) in dwarf mice in comparison with controls, and GHRH treatment did not modify either of these two parameters. Controls carrying GHRH pellets showed a significantly higher GH content (P<0.05) in the submaxillary gland than the placebo-treated normal mice. There were no differences between the IGF-I concentrations of placebo- and GHRH-treated salivary tissue from normal mice. Analysis of GH mRNA by RT-PCR followed by Southern blot revealed that GH transcripts were present in the salivary gland samples carrying the placebo pellets in both normal and dwarf mice. The expression of GH was significantly (P<0.05) increased by the GHRH pellets in salivary tissue from normal mice, but not in submaxillary glands from dwarf mice. Pit-1 mRNA was not detected in the GHRH-treated glands of normal and dwarf mice by RT-PCR or by Southern blot. Using these highly sensitive methods, we have been able to detect the transcription of both GH and Pit-1 in pituitaries from Pit-1-deficient Ames dwarf mice. The present experiment demonstrates that salivary tissue synthesizes GH when it is exposed to the influence of GHRH. Both basal and GHRH-induced salivary GH expression appear to be independent of Pit-1.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Allancer Divino De Carvalho Nunes ◽  
Lin Yu ◽  
Collin Lahde ◽  
Sarah Noureddine ◽  
Tatiana Saccon ◽  
...  

2020 ◽  
Vol 132 ◽  
pp. 110851 ◽  
Author(s):  
Tatiana Dandolini Saccon ◽  
Monique Tomazele Rovani ◽  
Driele Neske Garcia ◽  
Rafael Gianella Mondadori ◽  
Luis Augusto Xavier Cruz ◽  
...  

2019 ◽  
Vol 317 (6) ◽  
pp. H1292-H1300 ◽  
Author(s):  
Young-Rae Kim ◽  
Julia S. Jacobs ◽  
Qiuxia Li ◽  
Ravinder Reddy Gaddam ◽  
Ajit Vikram ◽  
...  

SUMOylation is a posttranslational modification of lysine residues. Modification of proteins by small ubiquitin-like modifiers (SUMO)1, -2, and -3 can achieve varied, and often unique, physiological and pathological effects. We looked for SUMO2-specific effects on vascular endothelial function. SUMO2 expression was upregulated in the aortic endothelium of hypercholesterolemic low-density lipoprotein receptor-deficient mice and was responsible for impairment of endothelium-dependent vasorelaxation in these mice. Moreover, overexpression of SUMO2 in aortas ex vivo, in cultured endothelial cells, and transgenically in the endothelium of mice increased vascular oxidative stress and impaired endothelium-dependent vasorelaxation. Conversely, inhibition of SUMO2 impaired physiological endothelium-dependent vasorelaxation in normocholesterolemic mice. These findings indicate that while endogenous SUMO2 is important in maintenance of normal endothelium-dependent vascular function, its upregulation impairs vascular homeostasis and contributes to hypercholesterolemia-induced endothelial dysfunction. NEW & NOTEWORTHY Sumoylation is known to impair vascular function; however, the role of specific SUMOs in the regulation of vascular function is not known. Using multiple complementary approaches, we show that hyper-SUMO2ylation impairs vascular endothelial function and increases vascular oxidative stress, whereas endogenous SUMO2 is essential for maintenance of normal physiological function of the vascular endothelium.


Sign in / Sign up

Export Citation Format

Share Document