scholarly journals Changes in Body Composition and Aerobic Capacity after High Altitude Exposure in Elite Climbers

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Alex Robert Carlson ◽  
Alexander Kasak ◽  
Amine Issa ◽  
Bryan Taylor ◽  
Douglas Summerfield ◽  
...  
2011 ◽  
Vol 12 (4) ◽  
pp. 357-369 ◽  
Author(s):  
Andrea Ermolao ◽  
Marco Bergamin ◽  
Alberto Carlo Rossi ◽  
Luca Dalle Carbonare ◽  
Marco Zaccaria

2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 286
Author(s):  
Andrea Ermolao ◽  
Marco Bergamin ◽  
Alberto Rossi ◽  
Silvia Tolomio ◽  
Marco Zaccaria

Author(s):  
Angus R. Teece ◽  
Christos K. Argus ◽  
Nicholas Gill ◽  
Martyn Beaven ◽  
Ian C. Dunican ◽  
...  

Background: Preseason training optimises adaptations in the physical qualities required in rugby union athletes. Sleep can be compromised during periods of intensified training. Therefore, we investigated the relationship between sleep quantity and changes in physical performance over a preseason phase in professional rugby union athletes. Methods: Twenty-nine professional rugby union athletes (Mean ± SD, age: 23 ± 3 years) had their sleep duration monitored for 3 weeks using wrist actigraphy. Strength and speed were assessed at baseline and at week 3. Aerobic capacity and body composition were assessed at baseline, at week 3 and at week 5. Participants were stratified into 2 groups for analysis: <7 h 30 min sleep per night (LOW, n = 15) and >7 h 30 min sleep per night (HIGH, n = 14). Results: A significant group x time interaction was determined for aerobic capacity (p = 0.02, d = 1.25) at week 3 and for skinfolds at week 3 (p < 0.01, d = 0.58) and at week 5 (p = 0.02, d = 0.92), in favour of the HIGH sleep group. No differences were evident between groups for strength or speed measures (p ≥ 0.05). Conclusion: This study highlights that longer sleep duration during the preseason may assist in enhancing physical qualities including aerobic capacity and body composition in elite rugby union athletes.


2011 ◽  
Vol 36 (5) ◽  
pp. 660-670 ◽  
Author(s):  
Laura A. Daray ◽  
Tara M. Henagan ◽  
Michael Zanovec ◽  
Conrad P. Earnest ◽  
Lisa G. Johnson ◽  
...  

The purpose of this study was to determine whether endurance (E) or endurance + resistance (ER) training affects C-reactive protein (CRP) and if these changes are related to alterations in fitness and (or) body composition in young females. Thirty-eight females (aged 18–24 years) were assigned to 1 of 3 groups: (1) E, (2) ER or (3) active control (AC). The E and ER groups completed 15 weeks of marathon training. The ER group performed additional resistance training and the AC group maintained their usual exercise routine. Primary outcomes were measured pre- and post-training and included anthropometric indices, dual-energy x-ray absorptiometry, plasma CRP, time to complete 1.5 miles (in minutes), and upper and lower body strength tests (i.e., 8 repetition max on bench and leg press (ER group only)). There were no differences in any variable among the groups at baseline. After training, the E group decreased time to complete 1.5 miles (p < 0.05). The AC group decreased percent and absolute body fat while the E group decreased percent body fat, absolute body fat, and android and gynoid body fat (p < 0.05). The ER group significantly improved strength (p < 0.001) and reduced plasma CRP from 2.0 ± 1.1 to 0.8 ± 0.3 mg·L–1 (p = 0.03). No significant associations were observed between CRP and measures of body composition or aerobic capacity. Combined endurance and resistance training may be an effective modality for reducing plasma CRP in young adult females independent of changes in aerobic capacity or body composition.


Hypertension ◽  
2013 ◽  
Vol 61 (4) ◽  
pp. 793-799 ◽  
Author(s):  
Paolo Salvi ◽  
Miriam Revera ◽  
Andrea Faini ◽  
Andrea Giuliano ◽  
Francesca Gregorini ◽  
...  

2016 ◽  
Vol 23 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Daniel A. Nation ◽  
Mark W. Bondi ◽  
Ellis Gayles ◽  
Dean C. Delis

AbstractObjectives: Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. Methods: In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Results: Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Conclusions: Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1–10)


Sign in / Sign up

Export Citation Format

Share Document