scholarly journals Critical role of Kv channels in cerebrovascular dysfunction associated with ischemic small vessel disease in a mouse genetic model

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Fabrice Dabertrand ◽  
Adrian D Bonev ◽  
Cristel Krøigaard ◽  
Joseph E Brayden ◽  
Anne Joutel ◽  
...  
2015 ◽  
Vol 112 (7) ◽  
pp. E796-E805 ◽  
Author(s):  
Fabrice Dabertrand ◽  
Christel Krøigaard ◽  
Adrian D. Bonev ◽  
Emmanuel Cognat ◽  
Thomas Dalsgaard ◽  
...  

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), caused by dominant mutations in the NOTCH3 receptor in vascular smooth muscle, is a genetic paradigm of small vessel disease (SVD) of the brain. Recent studies using transgenic (Tg)Notch3R169C mice, a genetic model of CADASIL, revealed functional defects in cerebral (pial) arteries on the surface of the brain at an early stage of disease progression. Here, using parenchymal arterioles (PAs) from within the brain, we determined the molecular mechanism underlying the early functional deficits associated with this Notch3 mutation. At physiological pressure (40 mmHg), smooth muscle membrane potential depolarization and constriction to pressure (myogenic tone) were blunted in PAs from TgNotch3R169C mice. This effect was associated with an ∼60% increase in the number of voltage-gated potassium (KV) channels, which oppose pressure-induced depolarization. Inhibition of KV1 channels with 4-aminopyridine (4-AP) or treatment with the epidermal growth factor receptor agonist heparin-binding EGF (HB-EGF), which promotes KV1 channel endocytosis, reduced KV current density and restored myogenic responses in PAs from TgNotch3R169C mice, whereas pharmacological inhibition of other major vasodilatory influences had no effect. KV1 currents and myogenic responses were similarly altered in pial arteries from TgNotch3R169C mice, but not in mesenteric arteries. Interestingly, HB-EGF had no effect on mesenteric arteries, suggesting a possible mechanistic basis for the exclusive cerebrovascular manifestation of CADASIL. Collectively, our results indicate that increasing the number of KV1 channels in cerebral smooth muscle produces a mutant vascular phenotype akin to a channelopathy in a genetic model of SVD.


Author(s):  
Rutger Heinen ◽  
Onno N. Groeneveld ◽  
Frederik Barkhof ◽  
Jeroen Bresser ◽  
Lieza G. Exalto ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1545
Author(s):  
Narek Manukjan ◽  
Zubair Ahmed ◽  
Daniel Fulton ◽  
W. Matthijs Blankesteijn ◽  
Sébastien Foulquier

Key pathological features of cerebral small vessel disease (cSVD) include impairment of the blood brain barrier (BBB) and the progression of white matter lesions (WMLs) amongst other structural lesions, leading to the clinical manifestations of cSVD. The function of endothelial cells (ECs) is of major importance to maintain a proper BBB. ECs interact with several cell types to provide structural and functional support to the brain. Oligodendrocytes (OLs) myelinate axons in the central nervous system and are crucial in sustaining the integrity of white matter. The interplay between ECs and OLs and their precursor cells (OPCs) has received limited attention yet seems of relevance for the study of BBB dysfunction and white matter injury in cSVD. Emerging evidence shows a crosstalk between ECs and OPCs/OLs, mediated by signaling through the Wingless and Int-1 (WNT)/β-catenin pathway. As the latter is involved in EC function (e.g., angiogenesis) and oligodendrogenesis, we reviewed the role of WNT/β-catenin signaling for both cell types and performed a systematic search to identify studies describing a WNT-mediated interplay between ECs and OPCs/OLs. Dysregulation of this interaction may limit remyelination of WMLs and render the BBB leaky, thereby initiating a vicious neuroinflammatory cycle. A better understanding of the role of this signaling pathway in EC–OL crosstalk is essential in understanding cSVD development.


Neurology ◽  
2019 ◽  
pp. 10.1212/WNL.0000000000008364 ◽  
Author(s):  
Kim Wiegertjes ◽  
Annemieke ter Telgte ◽  
Pedro B. Oliveira ◽  
Esther M.C. van Leijsen ◽  
Mayra I. Bergkamp ◽  
...  

2011 ◽  
Vol 219 (1) ◽  
pp. 368-372 ◽  
Author(s):  
Elisa Cuadrado-Godia ◽  
Angel Ois ◽  
Eva Garcia-Ramallo ◽  
Eva Giralt ◽  
Sara Jimena ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ralph Klose ◽  
Alexander Prinz ◽  
Fabian Tetzlaff ◽  
Eva-Maria Weis ◽  
Iris Moll ◽  
...  

AbstractVascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFβ-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFβ signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFβ signaling.


Sign in / Sign up

Export Citation Format

Share Document