transcriptional repressors
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 87)

H-INDEX

59
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
T. V. Divya ◽  
Celin Acharya

Metallothioneins (MTs) are cysteine-rich, metal-sequestering cytosolic proteins that play a key role in maintaining metal homeostasis and detoxification. We had previously characterized NmtA, a MT from the heterocystous, nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 and demonstrated its role in providing protection against cadmium toxicity. In this study, we illustrate the regulation of Anabaena NmtA by AzuR (Alr0831) belonging to the SmtB/ArsR family of transcriptional repressors. There is currently no experimental evidence for any functional role of AzuR. It is observed that azuR is located within the znuABC operon but in the opposite orientation and remotely away from the nmtA locus. Sequence analysis of AzuR revealed a high degree of sequence identity with Synechococcus SmtB and a distinct α5 metal binding site similar to that of SmtB. In order to characterize AzuR, we overexpressed it in Escherichia coli and purified it by chitin affinity chromatography. Far-UV circular dichroism spectroscopy indicated that the recombinant AzuR protein possessed a properly folded structure. Glutaraldehyde cross-linking and size-exclusion chromatography revealed that AzuR exists as a dimer of ∼28 kDa in solution. Analysis of its putative promoter region [100 bp upstream of nmtA open reading frame (ORF)] identified the presence of a 12–2–12 imperfect inverted repeat as the cis-acting element important for repressor binding. Electrophoretic mobility shift assays (EMSAs) showed concentration-dependent binding of recombinant dimeric AzuR with the promoter indicating that NmtA is indeed a regulatory target of AzuR. Binding of AzuR to DNA was disrupted in the presence of metal ions like Zn2+, Cd2+, Cu2+, Co2+, Ni2+, Pb2+, and Mn2+. The metal-dependent dissociation of protein–DNA complexes suggested the negative regulation of metal-inducible nmtA expression by AzuR. Overexpression of azuR in its native strain Anabaena 7120 enhanced the susceptibility to cadmium stress significantly. Overall, we propose a negative regulation of Anabaena MT by an α5 SmtB/ArsR metalloregulator AzuR.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261730
Author(s):  
John M. Haynes ◽  
Shanti M. Sibuea ◽  
Alita A. Aguiar ◽  
Fangwei Li ◽  
Joan K. Ho ◽  
...  

In this study we investigate how β-catenin-dependent WNT signalling impacts midbrain dopaminergic neuron (mDA) specification. mDA cultures at day 65 of differentiation responded to 25 days of the tankyrase inhibitor XAV969 (XAV, 100nM) with reduced expression of markers of an A9 mDA phenotype (KCNJ6, ALDH1A1 and TH) but increased expression of the transcriptional repressors NR0B1 and NR0B2. Overexpression of NR0B1 and or NR0B2 promoted a loss of A9 dopaminergic neuron phenotype markers (KCNJ6, ALDH1A1 and TH). Overexpression of NR0B1, but not NR0B2 promoted a reduction in expression of the β-catenin-dependent WNT signalling pathway activator RSPO2. Analysis of Parkinson’s disease (PD) transcriptomic databases shows a profound PD-associated elevation of NR0B1 as well as reduced transcript for RSPO2. We conclude that reduced β-catenin-dependent WNT signalling impacts dopaminergic neuron identity, in vitro, through increased expression of the transcriptional repressor, NR0B1. We also speculate that dopaminergic neuron regulatory mechanisms may be perturbed in PD and that this may have an impact upon both existing nigral neurons and also neural progenitors transplanted as PD therapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizabeth D. Larson ◽  
Hideyuki Komori ◽  
Tyler J. Gibson ◽  
Cyrina M. Ostgaard ◽  
Danielle C. Hamm ◽  
...  

AbstractDuring Drosophila embryogenesis, the essential pioneer factor Zelda defines hundreds of cis-regulatory regions and in doing so reprograms the zygotic transcriptome. While Zelda is essential later in development, it is unclear how the ability of Zelda to define cis-regulatory regions is shaped by cell-type-specific chromatin architecture. Asymmetric division of neural stem cells (neuroblasts) in the fly brain provide an excellent paradigm for investigating the cell-type-specific functions of this pioneer factor. We show that Zelda synergistically functions with Notch to maintain neuroblasts in an undifferentiated state. Zelda misexpression reprograms progenitor cells to neuroblasts, but this capacity is limited by transcriptional repressors critical for progenitor commitment. Zelda genomic occupancy in neuroblasts is reorganized as compared to the embryo, and this reorganization is correlated with differences in chromatin accessibility and cofactor availability. We propose that Zelda regulates essential transitions in the neuroblasts and embryo through a shared gene-regulatory network driven by cell-type-specific enhancers.


2021 ◽  
Vol 219 (1) ◽  
Author(s):  
Kaitlin A. Read ◽  
Kenneth J. Oestreich

For over a decade, mutual antagonism between the transcriptional repressors Bcl-6 and Blimp-1 has been appreciated as a key mechanistic determinant of lymphoid differentiation programs. Now, in this issue of JEM, Ciucci et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202343) demonstrate that this relationship is "central" to the generation of T cell memory.


2021 ◽  
Vol 22 (22) ◽  
pp. 12400
Author(s):  
Marat Sabirov ◽  
Anastasia Popovich ◽  
Konstantin Boyko ◽  
Alena Nikolaeva ◽  
Olga Kyrchanova ◽  
...  

Most of the known Drosophila architectural proteins interact with an important cofactor, CP190, that contains three domains (BTB, M, and D) that are involved in protein–protein interactions. The highly conserved N-terminal CP190 BTB domain forms a stable homodimer that interacts with unstructured regions in the three best-characterized architectural proteins: dCTCF, Su(Hw), and Pita. Here, we identified two new CP190 partners, CG4730 and CG31365, that interact with the BTB domain. The CP190 BTB resembles the previously characterized human BCL6 BTB domain, which uses its hydrophobic groove to specifically associate with unstructured regions of several transcriptional repressors. Using GST pull-down and yeast two-hybrid assays, we demonstrated that mutations in the hydrophobic groove strongly affect the affinity of CP190 BTB for the architectural proteins. In the yeast two-hybrid assay, we found that architectural proteins use various mechanisms to improve the efficiency of interaction with CP190. Pita and Su(Hw) have two unstructured regions that appear to simultaneously interact with hydrophobic grooves in the BTB dimer. In dCTCF and CG31365, two adjacent regions interact simultaneously with the hydrophobic groove of the BTB and the M domain of CP190. Finally, CG4730 interacts with the BTB, M, and D domains of CP190 simultaneously. These results suggest that architectural proteins use different mechanisms to increase the efficiency of interaction with CP190.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1566
Author(s):  
Philip J. Murray ◽  
Eleonore Ocana ◽  
Hedda A. Meijer ◽  
Jacqueline Kim Dale

Several members of the Hes/Her family, conserved targets of the Notch signalling pathway, encode transcriptional repressors that dimerise, bind DNA and self-repress. Such autoinhibition of transcription can yield homeostasis and, in the presence of delays that account for processes such as transcription, splicing and transport, oscillations. Whilst previous models of autoinhibition of transcription have tended to treat processes such as translation as being unregulated (and hence linear), here we develop and explore a mathematical model that considers autoinhibition of transcription together with nonlinear regulation of translation. It is demonstrated that such a model can yield, in the absence of delays, nonlinear dynamical behaviours such as excitability, homeostasis, oscillations and intermittency. These results indicate that regulation of translation as well as transcription allows for a much richer range of behaviours than is possible with autoregulation of transcription alone. A number of experiments are suggested that would that allow for the signature of autoregulation of translation as well as transcription to be experimentally detected in a Notch signalling system.


2021 ◽  
Author(s):  
Yinhua Jin ◽  
Teni Anbarchian ◽  
Peng Wu ◽  
Abby Sarkar ◽  
Matt Fish ◽  
...  

Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition. In several tissues including the liver, transcriptional repressors such as E2F7 and E2F8 function as inhibitors of mitosis and promote polyploidy, but how growth factors release these mitotic inhibitors to facilitate cell cycle progression is unknown. We describe here a newly identified mechanism of cell division control in which Wnt/βcatenin signaling in the postnatal liver maintains active hepatocyte proliferation through Tbx3, a Wnt target gene. TBX3 directly represses transcription of E2f7 and E2f8, promoting a low ploidy state and cell cycle progression. This sequential transcriptional repressor cascade, initiated by Wnts, provides a new paradigm for exploring how a commonly active developmental signal impacts cell cycle completion.


2021 ◽  
Author(s):  
José Miguel Fernández-Justel ◽  
Cristina Santa-María ◽  
Alberto Ferrera-Lagoa ◽  
Mónica Salinas-Pena ◽  
Magdalena M. Maslon ◽  
...  

SUMMARYLinker histones are highly abundant chromatin-associated proteins with well-established structural roles in chromatin and as general transcriptional repressors. In addition, it has been long proposed that histone H1 exerts context-specific effects on gene expression. Here, we have identified a new function of histone H1 in chromatin structure and transcription using a range of genomic approaches. We show that histone H1-depleted cells accumulate nascent non-coding RNAs on chromatin, suggesting that histone H1 prevents non-coding RNA transcription and regulates non-coding transcript turnover on chromatin. Accumulated non-coding transcripts have reduced levels of m6A modification and cause replication-transcription conflicts. Accordingly, altering the m6A RNA methylation pathway rescues the replicative phenotype of H1 loss. This work unveils unexpected regulatory roles of histone H1 on non-coding RNA turnover and m6A deposition, highlighting the intimate relationship between chromatin conformation, RNA metabolism and DNA replication to maintain genome performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sören Werner ◽  
Isabel Bartrina ◽  
Thomas Schmülling

AbstractDuring vegetative growth plants pass from a juvenile to an adult phase causing changes in shoot morphology. This vegetative phase change is primarily regulated by the opposite actions of two microRNAs, the inhibitory miR156 and the promoting miR172 as well as their respective target genes, constituting the age pathway. Here we show that the phytohormone cytokinin promotes the juvenile-to-adult phase transition through regulating components of the age pathway. Reduction of cytokinin signalling substantially delayed the transition to the adult stage. tZ-type cytokinin was particularly important as compared to iP- and the inactive cZ-type cytokinin, and root-derived tZ influenced the phase transition significantly. Genetic and transcriptional analyses indicated the requirement of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors and miR172 for cytokinin activity. Two miR172 targets, TARGET OF EAT1 (TOE1) and TOE2 encoding transcriptional repressors were necessary and sufficient to mediate the influence of cytokinin on vegetative phase change. This cytokinin pathway regulating plant aging adds to the complexity of the regulatory network controlling the juvenile-to-adult phase transition and links cytokinin to miRNA action.


NAR Cancer ◽  
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sijie Wang ◽  
Sandra C. Ordonez-Rubiano ◽  
Alisha Dhiman ◽  
Guanming Jiao ◽  
Brayden P Strohmier ◽  
...  

Abstract Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.


Sign in / Sign up

Export Citation Format

Share Document