scholarly journals Rosiglitazone attenuated endothelin‐1‐induced vasoconstriction of pulmonary arteries in the rat model of pulmonary arterial hypertension (1089.13)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Yahan Liu ◽  
XiaoYu Tian ◽  
Yu Huang ◽  
Nanping Wang
2018 ◽  
Vol 99 ◽  
pp. 704-714 ◽  
Author(s):  
Bruna Gazzi de Lima-Seolin ◽  
Matheus Mittmann Hennemann ◽  
Rafael Oliveira Fernandes ◽  
Rafael Colombo ◽  
Jéssica Hellen Poletto Bonetto ◽  
...  

2019 ◽  
Vol 126 (2) ◽  
pp. 99-109
Author(s):  
Eva Malikova ◽  
Mattias Carlström ◽  
Zuzana Kmecova ◽  
Margareta Marusakova ◽  
Bianka Zsigmondova ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aifeng Chen ◽  
Shibiao Ding ◽  
Liangliang Kong ◽  
Jianpu Xu ◽  
Fei He ◽  
...  

AbstractPulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-β, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.


2018 ◽  
Vol 51 (6) ◽  
pp. 1702638 ◽  
Author(s):  
Anna R. Hemnes ◽  
Anandharajan Rathinasabapathy ◽  
Eric A. Austin ◽  
Evan L. Brittain ◽  
Erica J. Carrier ◽  
...  

Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1–7) (Ang-(1–7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1–7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg−1 intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2–4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gopinath Sutendra ◽  
Sebastien Bonnet ◽  
Paulette Wright ◽  
Peter Dromparis ◽  
Alois Haromy ◽  
...  

Nogo was first identified as an inhibitor of neuronal axonal regeneration. Recently, Nogo-B was implicated in the proliferative and anti-apoptotic remodeling in systemic arteries; reduced Nogo-B expression was seen in remodeled mouse femoral arteries following injury. Pulmonary arterial hypertension (PAH) is also characterized by proliferative/anti-apoptotic remodeling in pulmonary arteries (PA), sparing systemic vessels. PAH PA smooth muscle cells (PASMC) are characterized by mitochondrial hyperpolarization (increased ΔΨm), decreased production of reactive oxygen species (ROS) (suppressing mitochondria-dependent apoptosis), down-regulation of Kv1.5 and activation of the transcription factor NFAT (promoting contraction and proliferation). We found that in contrast to systemic vessels, Nogo-B expression is significantly increased in vivo and in vitro in PAs and PASMCs from patients (n=6) and mice (n=42) with PAH, compared to normals. We hypothesized that Nogo is involved in the pathogenesis of PAH . Nogo −/− mice (n=7) had a normal phenotype and, in contrast to Nogo +/+ , did not develop chronic hypoxia (CH)-induced PAH assessed invasively (catheterization, RV/LV+Septum) and non-invasively (pulmonary artery acceleration time and treadmill performance) (n=7, Table ). CH- Nogo +/+ PASMC had the expected increase in ΔΨm (measured by TMRM), decreased ROS (MitoSOX), increased [Ca ++ ] i (FLUO3), decreased Kv1.5 (immunohistochemistry) and NFAT activation (nuclear translocation). None of these changes occurred in CH- Nogo −/− PASMC while all were induced in normoxic Nogo +/+ PASMC by adenoviral over-expression of Nogo-B . Heterozygote CH- Nogo +/− (n=7) values were between Nogo −/− and Nogo +/+ suggesting a gene dose-dependent effect. Nogo is over-expressed in human and rodent PAH and induces critical features of the PAH phenotype. Nogo targeting might represent a novel and selective therapeutic strategy for PAH. Table


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kenzo Ichimura ◽  
Tetsuya Matoba ◽  
Ryoji Nagahama ◽  
Kaku Nakano ◽  
Kenji Sunagawa ◽  
...  

Background: Pulmonary arterial hypertension (PAH) is an intractable disease of small pulmonary artery in which multiple pathogenetic factors are involved. We have previously reported that poly(lactic acid/glycolic acid) (PLGA) nanoparticle (NP)-mediated targeting of pitavastatin into lungs by intratracheal instillation attenuated the development of PAH. In the present study we examined the effects of intravenous treatment with pitavastatin-NPs on the progression of already established PAH induced by monocrotaline (MCT). Methods and Results: Male Sprague-Dawley rats (200 to 230 g) were injected subcutaneously with 60 mg/kg MCT to induce PAH. At day 17 after MCT injection when PAH had been already established, animals were randomly divided into 4 groups, which treated with intravenous daily bolus administration of the following drugs for consecutive 4 days from 17 to 20 days after MCT injection; 1) vehicle, 2) FITC-NPs, 3) pitavastatin alone (1, 3, 10 or 30 mg/kg), or 4) pitavastatin-NPs (containing 1 or 3 mg/kg pitavastatin). Treatment with pitavastatin-NPs, but not with pitavastatin alone attenuated the progression of established PAH (Fig. A) associated with the reduction of inflammation and small pulmonary artery remodeling (stenosis and obstruction of pulmonary arterial branches) (Fig. B). In trace experiments, intravenous administration of FITC-NPs revealed the targeting of FITC-NPs into small pulmonary artery in rats with MCT-induced PAH, but not in normal animals. Importantly, in a separate protocol, treatment with pitavastatin-NPs improved the survival rate at day 35 (30% in pitavastatin-NP group vs. 61% in FITC-NP group, P<0.05 by Kaplan-Meier). Conclusion: A novel NP-mediated targeting of pitavastatin into small pulmonary arteries by intravenous administration attenuated the progression of established PAH and improved survival associated with anti-inflammatory and anti-remodeling effects in a rat model of MCT-induced PAH.


Sign in / Sign up

Export Citation Format

Share Document