Abstract 3570: A Critical and Novel Role of Nogo (Neurite Outgrowth Inhibitor) in Pulmonary Arterial Hypertension

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Gopinath Sutendra ◽  
Sebastien Bonnet ◽  
Paulette Wright ◽  
Peter Dromparis ◽  
Alois Haromy ◽  
...  

Nogo was first identified as an inhibitor of neuronal axonal regeneration. Recently, Nogo-B was implicated in the proliferative and anti-apoptotic remodeling in systemic arteries; reduced Nogo-B expression was seen in remodeled mouse femoral arteries following injury. Pulmonary arterial hypertension (PAH) is also characterized by proliferative/anti-apoptotic remodeling in pulmonary arteries (PA), sparing systemic vessels. PAH PA smooth muscle cells (PASMC) are characterized by mitochondrial hyperpolarization (increased ΔΨm), decreased production of reactive oxygen species (ROS) (suppressing mitochondria-dependent apoptosis), down-regulation of Kv1.5 and activation of the transcription factor NFAT (promoting contraction and proliferation). We found that in contrast to systemic vessels, Nogo-B expression is significantly increased in vivo and in vitro in PAs and PASMCs from patients (n=6) and mice (n=42) with PAH, compared to normals. We hypothesized that Nogo is involved in the pathogenesis of PAH . Nogo −/− mice (n=7) had a normal phenotype and, in contrast to Nogo +/+ , did not develop chronic hypoxia (CH)-induced PAH assessed invasively (catheterization, RV/LV+Septum) and non-invasively (pulmonary artery acceleration time and treadmill performance) (n=7, Table ). CH- Nogo +/+ PASMC had the expected increase in ΔΨm (measured by TMRM), decreased ROS (MitoSOX), increased [Ca ++ ] i (FLUO3), decreased Kv1.5 (immunohistochemistry) and NFAT activation (nuclear translocation). None of these changes occurred in CH- Nogo −/− PASMC while all were induced in normoxic Nogo +/+ PASMC by adenoviral over-expression of Nogo-B . Heterozygote CH- Nogo +/− (n=7) values were between Nogo −/− and Nogo +/+ suggesting a gene dose-dependent effect. Nogo is over-expressed in human and rodent PAH and induces critical features of the PAH phenotype. Nogo targeting might represent a novel and selective therapeutic strategy for PAH. Table


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Yann Grobs ◽  
Charlotte romanet ◽  
Valerie Nadeau ◽  
Junichi Omura ◽  
Mark Orcholski ◽  
...  

Like cancer, pulmonary arterial hypertension (PAH) is characterized by exaggerated proliferation and resistance to apoptosis related to metabolic alterations (Warburg effect) of pulmonary smooth muscle cells (PASMCs). These anomalies result in a progressive narrowing of the pulmonary arteries, increasing pulmonary resistance and leading to right heart failure and premature death. In cancer cells, unphosphorylated and nuclear FOXO3 has been extensively studied as a crucial protein that functions as a tumor suppressor by regulating expression of genes involved in apoptosis and cell cycle arrest. These functions combined with other FOXO3 attributes, including its key role in communicating mitochondrial-nuclear signals, make the FOXO3 a suitable candidate for controlling the cancer-like phenotype of PAH-PASMCs. Interestingly, AKT and AMPK known to be implicated in PAH exert antagonistic effects on FOXO3; AKT promoting its nuclear exclusion while AMPK favors its nuclear and mitochondrial accumulation. The thus made the hypothesis that FOXO3’s nuclear exclusion (secondary to AKT/AMPK imbalance) promotes metabolic reprogramming towards glycolysis leading to enhanced proliferation/resistance to apoptosis of PAH-PASMCs and vascular remodeling. Using Western blot and immunofluorescence in isolated PASMCs from both PAH and control patients (n=10), we found that nuclear and mitochondrial exclusion of FOXO3 due to its phosphorylation is a feature of PAH-PASMCs. In vitro, we demonstrated that nuclear localization of FOXO3 using an adenovirus expressing a constitutively active, non-phosphorylable form of FOXO3 or trifluoperazine (TFP) resulted in reduced PAH-PASMC proliferation (Ki67 labeling, p<0,0005) and resistance to apoptosis (Annexin V assay, p<0,05). These effects were accompanied by increased expression of P27 and SOD2 and diminished expression of Survivin (p<0,05). In vivo, we showed that FOXO3 activation using TPF improved established PAH in the monocrotaline rats (reduced RVSP and increased Sv and CO, by right catheterization, p<0,01, n=29) without any sign of toxicity. We showed that FOXO3 is implicated in pulmonary vascular remodeling. Pharmacological activation of FOXO3 may represent a novel avenue to improve PAH.



2020 ◽  
Vol 319 (2) ◽  
pp. H377-H391 ◽  
Author(s):  
Si Lei ◽  
Fei Peng ◽  
Mei-Lei Li ◽  
Wen-Bing Duan ◽  
Cai-Qin Peng ◽  
...  

Smooth muscle-enriched long noncoding RNA (SMILR), as a long noncoding RNA (lncRNA), was increased in pulmonary arterial hypertension (PAH) patients and in vitro and in vivo models. SMILR activated RhoA/ROCK signaling by targeting miR-141 to disinhibit its downstream target RhoA. SMILR knockdown or miR-141 overexpression inhibited hypoxia-induced cell proliferation and migration via repressing RhoA/ROCK signaling in pulmonary arterial smooth muscle cells (PASMCs), which was confirmed in vivo experiments that knockdown of SMILR inhibited vascular remodeling and alleviated PAH in rats. SMILR may be a promising and novel therapeutic target for the treatment and drug development of PAH.



2015 ◽  
Vol 308 (10) ◽  
pp. L1046-L1057 ◽  
Author(s):  
Mikko H. Helenius ◽  
Sanna Vattulainen ◽  
Mark Orcholski ◽  
Joonas Aho ◽  
Anne Komulainen ◽  
...  

Endothelial cell (EC) dysfunction plays a role in the pathobiology of occlusive vasculopathy in pulmonary arterial hypertension (PAH). Purinergic signaling pathways, which consist of extracellular nucleotide and nucleoside-mediated cell signaling through specific receptors, are known to be important regulators of vascular tone and remodeling. Therefore, we hypothesized that abnormalities in the vascular purinergic microenvironment are associated with PAH. Enzymatic clearance is crucial to terminate unnecessary cell activation; one of the most abundantly expressed enzymes on the EC surface is E-NTPDase1/CD39, which hydrolyzes ATP and ADP to AMP. we used histological samples from patients and healthy donors, radioisotope-labeled substrates to measure ectoenzyme activity, and a variety of in vitro approaches to study the role of CD39 in PAH. Immunohistochemistry on human idiopathic PAH (IPAH) patients' lungs demonstrated that CD39 was significantly downregulated in the endothelium of diseased small arteries. Similarly, CD39 expression and activity were decreased in cultured pulmonary ECs from IPAH patients. Suppression of CD39 in vitro resulted in EC phenotypic switch that gave rise to apoptosis-resistant pulmonary arterial endothelial cells and promoted a microenvironment that induced vascular smooth muscle cell migration. we also identified that the ATP receptor P2Y11 is essential for ATP-mediated EC survival. Furthermore, we report that apelin, a known regulator of pulmonary vascular homeostasis, can potentiate the activity of CD39 both in vitro and in vivo. we conclude that sustained attenuation of CD39 activity through ATP accumulation is tightly linked to vascular dysfunction and remodeling in PAH and could represent a novel target for therapy.



2018 ◽  
Vol 8 (2) ◽  
pp. 204589401876829 ◽  
Author(s):  
Sasiharan Sithamparanathan ◽  
Mariana C. Rocha ◽  
Jehill D. Parikh ◽  
Karolina A. Rygiel ◽  
Gavin Falkous ◽  
...  

Mitochondrial dysfunction within the pulmonary vessels has been shown to contribute to the pathology of idiopathic pulmonary arterial hypertension (IPAH). We investigated the hypothesis of whether impaired exercise capacity observed in IPAH patients is in part due to primary mitochondrial oxidative phosphorylation (OXPHOS) dysfunction in skeletal muscle. This could lead to potentially new avenues of treatment beyond targeting the pulmonary vessels. Nine clinically stable participants with IPAH underwent cardiopulmonary exercise testing, in vivo and in vitro assessment of mitochondrial function by 31P-magnetic resonance spectroscopy (31P-MRS) and laboratory muscle biopsy analysis. 31P-MRS showed abnormal skeletal muscle bioenergetics with prolonged recovery times of phosphocreatine and abnormal muscle pH handling. Histochemistry and quadruple immunofluorescence performed on muscle biopsies showed normal function and subunit protein abundance of the complexes within the OXPHOS system. Our findings suggest that there is no primary mitochondrial OXPHOS dysfunction but raises the possibility of impaired oxygen delivery to the mitochondria affecting skeletal muscle bioenergetics during exercise.



2020 ◽  
Vol 34 (10) ◽  
pp. 2730-2744
Author(s):  
Zhi Chang ◽  
Jia‐ling Wang ◽  
Zhi‐cheng Jing ◽  
Ping Ma ◽  
Qing‐bing Xu ◽  
...  


2016 ◽  
Vol 310 (11) ◽  
pp. L1233-L1242 ◽  
Author(s):  
Jia-Xin Ye ◽  
Shan-Shan Wang ◽  
Min Ge ◽  
Dong-Jin Wang

Endothelial dysfunction plays a principal role in the pathogenesis of pulmonary arterial hypertension (PAH), which is a fatal disease with limited effective clinical treatments. Mitochondrial dysregulation and oxidative stress are involved in endothelial dysfunction. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and a master regulator of mitochondrial biogenesis. However, the roles of PGC-1α in hypoxia-induced endothelial dysfunction are not completely understood. We hypothesized that hypoxia reduces PGC-1α expression and leads to endothelial dysfunction in hypoxia-induced PAH. We confirmed that hypoxia has a negative impact on endothelial PGC-1α in experimental PAH in vitro and in vivo. Hypoxia-induced PGC-1α inhibited the oxidative metabolism and mitochondrial function, whereas sustained PGC-1α decreased reactive oxygen species (ROS) formation, mitochondrial swelling, and NF-κB activation and increased ATP formation and endothelial nitric oxide synthase (eNOS) phosphorylation. Furthermore, hypoxia-induced changes in the mean pulmonary arterial pressure and right heart hypertrophy were nearly normal after intervention. These results suggest that PGC-1α is associated with endothelial function in hypoxia-induced PAH and that improved endothelial function is associated with improved cellular mitochondrial respiration, reduced inflammation and oxygen stress, and increased PGC-1α expression. Taken together, these findings indicate that PGC-1α may be a new therapeutic target in PAH.



2007 ◽  
Vol 293 (3) ◽  
pp. L548-L554 ◽  
Author(s):  
Fares A. Masri ◽  
Weiling Xu ◽  
Suzy A. A. Comhair ◽  
Kewal Asosingh ◽  
Michelle Koo ◽  
...  

Idiopathic pulmonary arterial hypertension (IPAH) is characterized by plexiform vascular lesions, which are hypothesized to arise from deregulated growth of pulmonary artery endothelial cells (PAEC). Here, functional and molecular differences among PAEC derived from IPAH and control human lungs were evaluated. Compared with control cells, IPAH PAEC had greater cell numbers in response to growth factors in culture due to increased proliferation as determined by bromodeoxyuridine incorporation and Ki67 nuclear antigen expression and decreased apoptosis as determined by caspase-3 activation and TdT-mediated dUTP nick end labeling assay. IPAH cells had greater migration than control cells but less organized tube formation in in vitro angiogenesis assay. Persistent activation of signal transducer and activator of transcription 3 (STAT3), a regulator of cell survival and angiogenesis, and increased expression of its downstream prosurvival target, Mcl-1, were identified in IPAH PAEC. A Janus kinase (JAK) selective inhibitor reduced STAT3 activation and blocked proliferation of IPAH cells. Phosphorylated STAT3 was detected in endothelial cells of IPAH lesions in vivo, suggesting that STAT3 activation plays a role in the proliferative pulmonary vascular lesions in IPAH lungs.



2021 ◽  
Vol 22 (17) ◽  
pp. 9105
Author(s):  
Malik Bisserier ◽  
Michael G. Katz ◽  
Carlos Bueno-Beti ◽  
Agnieszka Brojakowska ◽  
Shihong Zhang ◽  
...  

Pulmonary arterial hypertension (PAH) is a devastating lung disease characterized by the progressive obstruction of the distal pulmonary arteries (PA). Structural and functional alteration of pulmonary artery smooth muscle cells (PASMC) and endothelial cells (PAEC) contributes to PA wall remodeling and vascular resistance, which may lead to maladaptive right ventricular (RV) failure and, ultimately, death. Here, we found that decreased expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in the lung samples of PAH patients was associated with the down-regulation of bone morphogenetic protein receptor type 2 (BMPR2) and the activation of signal transducer and activator of transcription 3 (STAT3). Our results showed that the antiproliferative properties of SERCA2a are mediated through the STAT3/BMPR2 pathway. At the molecular level, transcriptome analysis of PASMCs co-overexpressing SERCA2a and BMPR2 identified STAT3 amongst the most highly regulated transcription factors. Using a specific siRNA and a potent pharmacological STAT3 inhibitor (STAT3i, HJC0152), we found that SERCA2a potentiated BMPR2 expression by repressing STAT3 activity in PASMCs and PAECs. In vivo, we used a validated and efficient model of severe PAH induced by unilateral left pneumonectomy combined with monocrotaline (PNT/MCT) to further evaluate the therapeutic potential of single and combination therapies using adeno-associated virus (AAV) technology and a STAT3i. We found that intratracheal delivery of AAV1 encoding SERCA2 or BMPR2 alone or STAT3i was sufficient to reduce the mean PA pressure and vascular remodeling while improving RV systolic pressures, RV ejection fraction, and cardiac remodeling. Interestingly, we found that combined therapy of AAV1.hSERCA2a with AAV1.hBMPR2 or STAT3i enhanced the beneficial effects of SERCA2a. Finally, we used cardiac magnetic resonance imaging to measure RV function and found that therapies using AAV1.hSERCA2a alone or combined with STAT3i significantly inhibited RV structural and functional changes in PNT/MCT-induced PAH. In conclusion, our study demonstrated that combination therapies using SERCA2a gene transfer with a STAT3 inhibitor could represent a new promising therapeutic alternative to inhibit PAH and to restore BMPR2 expression by limiting STAT3 activity.



Sign in / Sign up

Export Citation Format

Share Document