scholarly journals Genetic dissection reveals unexpected influence of β subunits on KCNQ1 K + channel polarized trafficking in vivo

2010 ◽  
Vol 25 (2) ◽  
pp. 727-736 ◽  
Author(s):  
Torsten K. Roepke ◽  
Elizabeth C. King ◽  
Kerry Purtell ◽  
Vikram A. Kanda ◽  
Daniel J. Lerner ◽  
...  
1993 ◽  
Vol 264 (2) ◽  
pp. C251-C270 ◽  
Author(s):  
C. H. Joiner

Cellular dehydration is one of several pathological features of the sickle cell. Cation depletion is quite severe in certain populations of sickle cells and contributes to the rheological dysfunction that is the root cause of vascular occlusion in this disease. The mechanism of dehydration of sickle cells in vivo has not been ascertained, but three transport pathways may play important roles in this process. These include the deoxygenation-induced pathway that permits passive K+ loss and entry of Na+ and Ca2+; the K(+)-Cl- cotransport pathway, activated by acidification or cell swelling; and the Ca(2+)-activated K+ channel, or Gardos pathway, presumably activated by deoxygenation-induced Ca2+ influx. Recent evidence suggests that these pathways may interact in vivo. Heterogeneity exists among sickle cells as to the rate at which they become dense, suggesting that other factors may affect the activity or interactions of these pathways. Understanding the mechanism of dehydration of sickle cells may provide opportunities for pharmacological manipulation of cell volume to mitigate some of the symptoms of sickle cell disease.


2009 ◽  
Vol 96 (3) ◽  
pp. 474a
Author(s):  
Cristian A. Zaelzer ◽  
Walter Sandtner ◽  
Clark Hyde ◽  
Ramon Latorre ◽  
Francisco Bezanilla

2016 ◽  
Vol 147 (2) ◽  
pp. 105-125 ◽  
Author(s):  
Elke Bocksteins

Members of the electrically silent voltage-gated K+ (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K+ channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments.


2012 ◽  
Vol 102 (3) ◽  
pp. 132a
Author(s):  
Sonya M. Bierbower ◽  
Frank S. Choveau ◽  
Mark S. Shapiro

2007 ◽  
Vol 35 (5) ◽  
pp. 1064-1068 ◽  
Author(s):  
D.P. Mohapatra ◽  
K.-S. Park ◽  
J.S. Trimmer

Voltage-gated K+ channels are key regulators of neuronal excitability. The Kv2.1 voltage-gated K+ channel is the major delayed rectifier K+ channel expressed in most central neurons, where it exists as a highly phosphorylated protein. Kv2.1 plays a critical role in homoeostatic regulation of intrinsic neuronal excitability through its activity- and calcineurin-dependent dephosphorylation. Here, we review studies leading to the identification and functional characterization of in vivo Kv2.1 phosphorylation sites, a subset of which contribute to graded modulation of voltage-dependent gating. These findings show that distinct developmental-, cell- and state-specific regulation of phosphorylation at specific sites confers a diversity of functions on Kv2.1 that is critical to its role as a regulator of intrinsic neuronal excitability.


1998 ◽  
Vol 274 (3) ◽  
pp. R677-R685 ◽  
Author(s):  
James W. Butcher ◽  
Julian F. R. Paton

We investigated the role of potassium conductances in the nucleus of the solitary tract (NTS) in determining the efficacy of the baroreceptor and cardiopulmonary reflexes in anesthetized rats. The baroreceptor reflex was elicited with an intravenous injection of phenylephrine to evoke a reflex bradycardia, and the cardiopulmonary reflex was evoked with a right atrial injection of phenylbiguanide. Microinjection of two Ca-dependent potassium channel antagonists (apamin and charybdotoxin) into the NTS potentiated the baroreceptor reflex bradycardia. This may reflect the increased neuronal excitability observed previously in vitro with these blockers. In contrast, the Ca-dependent potassium channel antagonists attenuated the cardiopulmonary reflex, whereas voltage-dependent potassium channel antagonists (4-aminopyridine and dendrotoxin) attenuated both the baro- and cardiopulmonary reflexes when microinjected into the NTS. The possibility that the reflex attenuation observed indicates a predominant distribution of certain potassium channels on γ-aminobutyric acid interneurons is discussed.


1992 ◽  
Vol 58 ◽  
pp. 397
Author(s):  
Kenji Shinagawa ◽  
Atsushi Fukunari ◽  
Hisato Miyai ◽  
Tohru Nakajima

2012 ◽  
Vol 302 (5) ◽  
pp. E540-E551 ◽  
Author(s):  
Christopher J. Lynch ◽  
Qing Zhou ◽  
Show-Ling Shyng ◽  
David J. Heal ◽  
Sharon C. Cheetham ◽  
...  

Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg−1·day−1) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 KATP KCOs where rimonabant and ibipinabant allosterically regulated 3H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 KATP channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.


2020 ◽  
Vol 261 ◽  
pp. 113148
Author(s):  
Afia Ferdous ◽  
Rabir Ahmed Janta ◽  
Rubaiya Nushin Arpa ◽  
Mirola Afroze ◽  
Mala Khan ◽  
...  

1993 ◽  
Vol 265 (3) ◽  
pp. C720-C727 ◽  
Author(s):  
J. W. Stelling ◽  
T. J. Jacob

Single pigmented epithelial cells from the ciliary body of the eye were studied using the whole cell voltage and current clamp, permeabilized patch recording, and patch-clamp recording. These cells can produce two types of oscillation. Both are slow, with a period in the range of 1-2 min; one has a low amplitude and oscillates between -60 and -80 mV, and the second is larger, with biphasic hyperpolarizing and depolarizing phases. The latter was seen when the membrane potential was driven negative by a constant current and results from the interplay between the inward rectifier K+ channel and a hyperpolarizing-activated cation channel. The hyperpolarization is caused by the constant current acting on a decreasing conductance as the inward rectifier inactivates, and the depolarization drive results from the activation of cation channels. It is suggested that the constant current would be provided by the Na+ pump in vivo, and such an interplay of channels and pumps could drive the uptake of cations in absorbing epithelia or provide an increased driving force for chloride exit in secretory epithelia.


Sign in / Sign up

Export Citation Format

Share Document