Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground‐based human model

2020 ◽  
Vol 34 (11) ◽  
pp. 14920-14929
Author(s):  
Kévin Nay ◽  
Christelle Koechlin‐Ramonatxo ◽  
Sarah Rochdi ◽  
Marie‐Laure Island ◽  
Luz Orfila ◽  
...  
2020 ◽  
Author(s):  
Maxence Jollet ◽  
Bénédicte Goustard ◽  
Mahendra Mariadassou ◽  
Olivier Rué ◽  
Vincent Ollendorff ◽  
...  

Abstract Background A new problematic on the gut microbiota of the astronauts and the effects of microgravity emerged recently as that bacteria community is sensitive to physical (in)activity which could be hampered during spaceflights. Therefore, the objective of our study was thus to determine the effects of dry immersion, an innovative ground-based human model of simulated microgravity, on human gut microbiota composition. We collected stools from 14 healthy men before and after 5 days of Dry Immersion to determine taxonomic profiles by 16S metagenomic.Results Our analyses show preservation of α–diversity through Observed, Chao1, Shannon and InvSimpson indices. β–diversity is also not impacted by Dry Immersion as represented by PCoA plots with Jaccard, Bray-Curtis and UniFrac indices. Phyla abundances for OTUs associated to BacteroidetesP, FirmicutesP, ProteobacteriaP and ActinobacteriaP are also preserved. Interestingly, metagenomics analysis of the 32 families and 44 associated genera underscored that OTUs associated to ClostridialesO order and LachnospiraceaeF family are increased (p < 0.01) belonging to FirmicutesP phylum.Conclusion The diversity and global composition of the gut microbiome remained unaltered in response to Dry Immersion confirming the robustness of gut microbiota. However, it’s sufficient to led to several significant changes at the lower taxonomy levels. This suggests that the human gut microbiota, with its known strong impact on human health and performance, is a potential biological target of microgravity and underscores the need to investigate further this new field of research on gut microbiota – microgravity.Trial registration: ClinicalTrials.gov Identifier NCT03915457- Registered 16 April 2019 - Retrospectively registered - https://clinicaltrials.gov/ct2/show/NCT03915457.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4895-4895
Author(s):  
Marina Borges ◽  
Marina Dal'Bó Pelegrini Campioni ◽  
Dulcinéia Martins de Albuquerque ◽  
Carolina Lanaro ◽  
Fernando F. Costa ◽  
...  

Abstract Ceruloplasmin (CP) is a multicopper ferroxidase that oxidizes ferrous iron promoting the binding of ferric iron to transferrin. The secreted form of CP (sCP) produced mainly by the liver is essentially absent in patients with aceruloplasminemia, a rare type of hereditary iron overload with brain, liver and pancreatic siderosis. Alternative RNA splicing generates a form of CP that is anchored by glycosylphosphatidylinositol (GPI-CP) to the membrane of astrocytes and immune cells. GPI-CP has been reported to help stabilize ferroportin, the only known iron exporter in mammal cells, so we aimed to investigate whether ferroportin expression is abnormal in circulating blood cells in aceruloplasminemia and in paroxysmal nocturnal hemoglobinuria (PNH), a naturally-occurring human model of acquired deficiency of GPI-anchored proteins. Peripheral blood samples were collected from two patients with aceruloplasminemia with different mutations on the CP gene: CP c.2879-1 G>T (splice site mutation) and CP c.2756 T>C (missense mutation), both with undetectable levels of sCP (<0.02g/L), one patient with a large PNH clone (89.9% type III), and a healthy control. Immunophenotype was determined by incubation with fluorescent antibodies against GPI-CP, ferroportin, and known lineage surface markers (CD45, CD14, CD19, and HLA-DR), data acquisition on a FACS Canto equipment, and analysis with software FACS Diva. GPI-CP and ferroportin were only detectable in CD19+ lymphocytes and monocytes in all samples. We found no significant differences across subjects regarding lymphocytic expression of GPI-CP or ferroportin. In monocytes, the expressions of both proteins in aceruloplasminemia with CP c.2879-1 G>T were similar to those seen in the control. Nevertheless, monocytic expression of GPI-CP and ferroportin were significantly reduced in CP c.2756 T>C and PNH, when compared to the control. These data confirm previous observations that B lymphocytes and monocytes express GPI-CP and ferroportin, and concomitant reduction of both expressions in PNH and in CP c.2756 T>C support that GPI-CP fosters ferroportin stability on the cell membrane. We also show that, while germline mutations of the CP gene generally cause undetectable sCP, there is heterogeneity in GPI-CP expression, which may remain preserved, as observed in CP c.2879-1 G>T. Further studies are necessary to clarify why this splice site mutation would still allow GPI-anchoring, while the CP c.2756 T>C point mutation abrogates the ability to anchor GPI-CP. While the preservation of lymphocytic GPI-CP was not surprising in an essentially myeloid PNH clone, normal GPI-CP in B lymphocytes in aceruloplasminemia suggests there are lineage-specific differences in physiological expression of ceruloplasmin forms between B lymphocytes and monocytes, with possible implications to the importance of iron metabolism in immune responses. We also noticed that the CP c.2756 T>C patient with monocytic reduction ferroportin presented with slightly more intense anemia and microcytosis. This could result from lower expression of ferroportin in bone marrow macrophages, with impaired iron delivery to erythroblasts, in analogy to monocytes. Finally, acquired ferroportin deficiency in PNH monocytes implies that loss of GPI-anchored protein not only exposes these cells to lysis by complement, but also to intracellular iron retention, generation of reactive oxygen species and may be involved in the pathophysiology of PNH. In summary, our data show that heterogeneity in GPI-CP expression in B lymphocytes and monocytes results in differential expression of ferroportin in aceruloplasminemia and PNH, and future studies should aim at investigating the implications of dysregulated iron metabolism in immune cells. Disclosures Fertrin: Apopharma Inc.: Honoraria; Alexion Pharmaceuticals Brasil: Speakers Bureau.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
L. Treffel ◽  
N. Massabuau ◽  
K. Zuj ◽  
M.-A. Custaud ◽  
G. Gauquelin-Koch ◽  
...  

Background. Astronauts frequently experience back pain during and after spaceflight. The aim of this study was to utilize clinical methods to identify potential vertebral somatic dysfunction (VD) in subjects exposed to dry immersion (DI), a model of microgravity simulation. Method. The experiment was performed in a space research clinic, respecting all the ethical rules, with subjects completing three days of dry immersion (n=11). Assessments of VD, spine height, and back pain were made before and after simulated microgravity. Results. Back pain was present in DI with great global discomfort during the entire protocol. A low positive correlation was found (Pearson r=0.44; P<0.001) between VD before DI and pain developed in the DI experiment. Conclusions. There is a specific location of pain in both models of simulation. Our analysis leads to relativizing constraints on musculoskeletal system in function of simulation models. This study was the first to examine manual palpation of the spine in a space experience. Additionally, osteopathic view may be used to select those individuals who have less risk of developing back pain.


1984 ◽  
Vol 29 (10) ◽  
pp. 781-782
Author(s):  
Gene P. Sackett ◽  
David V. Baldwin
Keyword(s):  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
L Bystrom ◽  
HT Hsu ◽  
K Patel ◽  
E Yiantsidis ◽  
C Neto ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document