The PDZ protein SCRIB regulates sodium/iodide symporter (NIS) expression at the basolateral plasma membrane

2021 ◽  
Vol 35 (8) ◽  
Author(s):  
Mariano Martín ◽  
Lisa Salleron ◽  
Victoria Peyret ◽  
Romina Celeste Geysels ◽  
Elisabeth Darrouzet ◽  
...  
Thyroid ◽  
2021 ◽  
Author(s):  
Carlos Eduardo Bernal Barquero ◽  
Mariano Martín ◽  
Romina Celeste Geysels ◽  
Victoria Peyret ◽  
Patricia Papendieck ◽  
...  

2016 ◽  
Vol 310 (7) ◽  
pp. C576-C582 ◽  
Author(s):  
Jamile Calil-Silveira ◽  
Caroline Serrano-Nascimento ◽  
Peter Andreas Kopp ◽  
Maria Tereza Nunes

Adequate iodide supply and metabolism are essential for thyroid hormones synthesis. In thyrocytes, iodide uptake is mediated by the sodium-iodide symporter, but several proteins appear to be involved in iodide efflux. Previous studies demonstrated that pendrin is able to mediate apical efflux of iodide in thyrocytes. Acute iodide excess transiently impairs thyroid hormone synthesis, a phenomenon known as the Wolff-Chaikoff effect. Although the escape from this inhibitory effect is not completely understood, it has been related to the inhibition of sodium-iodide symporter-mediated iodide uptake. However, the effects of iodide excess on iodide efflux have not been characterized. Herein, we investigated the consequences of iodide excess on pendrin abundance, subcellular localization, and iodide efflux in rat thyroid PCCl3 cells. Our results indicate that iodide excess increases pendrin abundance and plasma membrane insertion after 24 h of treatment. Moreover, iodide excess increases pendrin half-life. Finally, iodide exposure also increases iodide efflux from PCCl3 cells. In conclusion, these data suggest that pendrin may have an important role in mediating iodide efflux in thyrocytes, especially under conditions of iodide excess.


2016 ◽  
Vol 113 (37) ◽  
pp. E5379-E5388 ◽  
Author(s):  
Giuseppe Ferrandino ◽  
Juan Pablo Nicola ◽  
Yuly E. Sánchez ◽  
Ignacia Echeverria ◽  
Yunlong Liu ◽  
...  

The sodium/iodide symporter (NIS) mediates active I− transport in the thyroid—the first step in thyroid hormone biosynthesis—with a 2 Na+: 1 I− stoichiometry. The two Na+ binding sites (Na1 and Na2) and the I− binding site interact allosterically: when Na+ binds to a Na+ site, the affinity of NIS for the other Na+ and for I− increases significantly. In all Na+-dependent transporters with the same fold as NIS, the side chains of two residues, S353 and T354 (NIS numbering), were identified as the Na+ ligands at Na2. To understand the cooperativity between the substrates, we investigated the coordination at the Na2 site. We determined that four other residues—S66, D191, Q194, and Q263—are also involved in Na+ coordination at this site. Experiments in whole cells demonstrated that these four residues participate in transport by NIS: mutations at these positions result in proteins that, although expressed at the plasma membrane, transport little or no I−. These residues are conserved throughout the entire SLC5 family, to which NIS belongs, suggesting that they serve a similar function in the other transporters. Our findings also suggest that the increase in affinity that each site displays when an ion binds to another site may result from changes in the dynamics of the transporter. These mechanistic insights deepen our understanding not only of NIS but also of other transporters, including many that, like NIS, are of great medical relevance.


2016 ◽  
Vol 473 (7) ◽  
pp. 919-928 ◽  
Author(s):  
Elisabeth Darrouzet ◽  
Fanny Graslin ◽  
Didier Marcellin ◽  
Iulia Tcheremisinova ◽  
Charles Marchetti ◽  
...  

Human sodium–iodide symporter (NIS) variants were created to suppress predicted binding motifs potentially implicated in trafficking of this protein. A leucine residue in an internal PDZ-binding motif was found to be essential for expression of the symporter at the plasma membrane.


2016 ◽  
Author(s):  
Alice Fletcher ◽  
Vikki Poole ◽  
Bhavika Modasia ◽  
Waraporn Imruetaicharoenchoke ◽  
Rebecca Thompson ◽  
...  

2017 ◽  
Author(s):  
Alice Fletcher ◽  
Vikki Poole ◽  
Bhavika Modasia ◽  
Waraporn Imruetaicharoenchoke ◽  
Rebecca Thompson ◽  
...  

2017 ◽  
Author(s):  
Rebecca J. Thompson ◽  
Alice Fletcher ◽  
Hannah Nieto ◽  
Mohammed Alshahrani ◽  
Katie Baker ◽  
...  

2018 ◽  
Author(s):  
Alice Fletcher ◽  
Vikki Poole ◽  
Caitlin Thornton ◽  
Kate Baker ◽  
Rebecca Thompson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document