In Vitro Effects of Fentanyl, Methohexital, and Thiopental on Brain Endothelial Permeability 

1995 ◽  
Vol 82 (2) ◽  
pp. 451-458 ◽  
Author(s):  
S. Fischer ◽  
D. Renz ◽  
W. Schaper ◽  
G. F. Karliczek

Background The use of anesthetics can lead to changes of the permeability of the blood-brain barrier (BBB). To eliminate those factors, such as varying hemodynamic effects that are associated with anesthesia, an in vitro model of the BBB consisting of brain microvascular endothelial cells (BMEC) was used to study the direct effects of the opiate, fentanyl, and the barbiturates methohexital and thiopental, which are widely used in the clinical setting, on the permeability of confluent monolayers. Methods BMEC isolated from porcine brains were grown to confluence on collagen-coated polycarbonate membranes, which were placed into 24 well dishes, thus forming a two-compartment chamber. The permeability of the BMEC monolayer to ions--determined by measurements of the transendothelial resistance (TER)--the passage of sucrose, Evans Blue albumin (EBA), and alpha-aminoisobutyric acid (AIB) across the BMEC monolayer were assessed in the presence and absence of fentanyl (25-100 ng/ml), methohexital (10-50 micrograms/ml), and thiopental (25-100 micrograms/ml). Results The permeability of cultured BMEC to the tracers used increased significantly after exposure of the monolayer to arabinose and after removal of calcium ions. Fentanyl, methohexital, and thiopental did not change the permeability of the cell monolayer to ions, sucrose, albumin, and AIB. Only thiopental at the concentration of 100 micrograms/ml increased the flux of AIB. Conclusions At the concentrations tested, there is little evidence of changes in the permeability of the in vitro BBB caused by fentanyl, methohexital, and thiopental regarding the para- and transcellular route of ions, sucrose, and albumin. Only thiopental at a concentration of 100 micrograms/ml increased the passage of AIB across the BMEC monolayer.

2015 ◽  
Vol 113 ◽  
pp. 314-320 ◽  
Author(s):  
Fabiola Pizzo ◽  
Francesca Caloni ◽  
Nicole B. Schreiber ◽  
Luis F. Schutz ◽  
Morgan L. Totty ◽  
...  

Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1752-1755 ◽  
Author(s):  
Christopher C. Silliman ◽  
Brian R. Curtis ◽  
Patricia M. Kopko ◽  
Samina Y. Khan ◽  
Marguerite R. Kelher ◽  
...  

Abstract Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality. Antibodies to HNA-3a are commonly implicated in TRALI. We hypothesized that HNA-3a antibodies prime neutrophils (PMNs) and cause PMN-mediated cytotoxicity through a two-event pathogenesis. Isolated HNA-3a+ or HNA-3a− PMNs were incubated with plasma containing HNA-3a antibodies implicated in TRALI, and their ability to prime the oxidase was measured. Human pulmonary microvascular endothelial cells (HMVECs) were activated with endotoxin or buffer, HNA-3a+ or HNA-3a− PMNs were added, and the coculture was incubated with plasma ± antibodies to HNA-3a. PMN-mediated damage was measured by counting viable HMVECs/mm2. Plasma containing HNA-3a antibodies primed the fMLP-activated respiratory burst of HNA-3a+, but not HNA-3a−, PMNs and elicited PMN-mediated damage of LPS-activated HMVECs when HNA-3a+, but not HNA-3a−, PMNs were used. Thus, antibodies to HNA-3a primed PMNs and caused PMN-mediated HMVEC cytotoxicity in a two-event model identical to biologic response modifiers implicated in TRALI.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 927-938 ◽  
Author(s):  
Mirian Lansink ◽  
Pieter Koolwijk ◽  
Victor van Hinsbergh ◽  
Teake Kooistra

Angiogenesis, the formation of new capillary blood vessels, is a feature of a variety of pathological processes. To study the effects of a specific group of hormones (all ligands of the steroid/retinoid/thyroid hormone receptor superfamily) on the angiogenic process in humans, we have used a model system in which human microvascular endothelial cells from foreskin (hMVEC) are cultured on top of a human fibrin matrix in the presence of basic fibroblast growth factor and tumor necrosis factor-α. This model mimics the in vivo situation where fibrin appears to be a common component of the matrix present at sites of chronic inflammation and tumor stroma. Our results show that testosterone and dexamethasone are strong inhibitors and all-trans retinoic acid (at-RA) and 9-cis retinoic acid (9-cis RA) are potent stimulators of the formation of capillary-like tubular structures. These effects are mediated by their respective nuclear hormone receptors as demonstrated by the use of specific synthetic receptor agonists and antagonists. 17β-estradiol, progesterone, and 1,25-dihydroxyvitamin D3 did not affect or only weakly affected in vitro angiogenesis, which may be related to the lack of significant nuclear receptor expression. Although hMVEC express both thyroid hormone receptors α and β, no effect of thyroid hormone on tube formation was found. The effects of testosterone, dexamethasone,at-RA, and 9-cis RA on tube formation were accompanied by parallel changes in urokinase-type plasminogen activator (u-PA) expression, at both mRNA and antigen levels. Exogenous suppletion of the medium with single chain u-PA enhances tube formation in our in vitro model, whereas quenching of u-PA activity (but not of tissue-type plasminogen activator activity) or of u-PA binding to u-PA receptor by specific antibodies suppressed basal and retinoid-stimulated tube formation. Moreover, addition of scu-PA to testosterone- or dexamethasone-treated hMVEC restored the suppressed angiogenic activity for a substantial part. Aprotinin, an inhibitor of plasmin activity, completely inhibited tube formation, indicating that the proteolytic properties of the u-PA/u-PA receptor complex are crucial in this process. Our results show that steroid hormones (testosterone and dexamethasone) and retinoids have strong, but opposite effects on tube formation in a human in vitro model reflecting pathological angiogenesis in the presence of fibrin and inflammatory mediators. These effects can be explained by hormone-receptor–mediated changes in u-PA expression, resulting in enhanced local proteolytic capacity of the u-PA/u-PA receptor complex.© 1998 by The American Society of Hematology.


2000 ◽  
Vol 60 (3) ◽  
pp. 222-231 ◽  
Author(s):  
Yves Ouellette ◽  
Darcy Lidington ◽  
Christian G. Naus ◽  
Karel Tyml

Sign in / Sign up

Export Citation Format

Share Document