A212 A CHRONIC PORCINE MODEL OF LIVE ESCHERICHIA COLI SEPSIS

1997 ◽  
Vol 87 (Supplement) ◽  
pp. 212A
Author(s):  
R. Bogdanski ◽  
M. Blobuer ◽  
F. Hanel ◽  
O. Mollenberg ◽  
J. Henke ◽  
...  
2002 ◽  
Vol 97 (1) ◽  
pp. 199-206 ◽  
Author(s):  
Marilia Elman ◽  
Ivan Goldstein ◽  
Charles-Hugo Marquette ◽  
Fréderic Wallet ◽  
Gilles Lenaour ◽  
...  

Background Pulmonary concentrations of aminoglycosides administered intravenously are usually low in the infected lung parenchyma. Nebulization represents an alternative to increase pulmonary concentrations, although the obstruction of bronchioles by purulent plugs may impair lung deposition by decreasing lung aeration. Methods An experimental bronchopneumonia was induced in anesthetized piglets by inoculating lower lobes with a suspension of 10(6) cfu/ml Escherichia coli. After 24 h of mechanical ventilation, 7 animals received two intravenous injections of 15 mg/kg amikacin, and 11 animals received two nebulizations of 40 mg/kg amikacin at 24-h intervals. One hour following the second administration, animals were killed, and multiple lung specimens were sampled for assessing amikacin pulmonary concentrations and quantifying lung aeration on histologic sections. Results Thirty-eight percent of the nebulized amikacin (15 mg/kg) reached the tracheobronchial tree. Amikacin pulmonary concentrations were always higher after nebulization than after intravenous administration, decreased with the extension of parenchymal infection, and were significantly influenced by lung aeration: 197 +/- 165 versus 6 +/- 5 microg/g in lung segments with focal bronchopneumonia (P = 0.03), 40 +/- 62 versus 5 +/- 3 microg/g in lung segments with confluent bronchopneumonia (P = 0.001), 18 +/- 7 versus 7 +/- 4 microg/g in lung segments with lung aeration of 30% or less, and 65 +/- 9 versus 2 +/- 3 microg/g in lung segments with lung aeration of 50% or more. Conclusions In a porcine model of severe bronchopneumonia, the nebulization of amikacin provided 3-30 times higher pulmonary concentrations than the intravenous administration of an equivalent dose. The greater the lung aeration, the higher were the amikacin pulmonary concentrations found in the infected lung segments.


Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Kristian Stærk ◽  
Rasmus Birkholm Grønnemose ◽  
Thomas Kastberg Nielsen ◽  
Nicky Anúel Petersen ◽  
Yaseelan Palarasah ◽  
...  

Most uropathogenic Escherichia coli (UPEC) express type-1 fimbriae (T1F), a key virulence factor for urinary tract infection (UTI) in mice. Evidence that conclusively associates this pilus with uropathogenesis in humans has, however, been difficult to obtain. We used an experimental porcine model of cystitis to assess the role of T1F in larger mammals more closely related to humans. Thirty-one pigs were infected with UPEC strain UTI89 or its T1F deficient mutant, UTI89ΔfimH, at inoculum titres of 102 to 108 colony forming units per millilitre. Urine and blood samples were collected and analysed 7 and 14 days post-inoculation, and whole bladders were removed at day 14 and analysed for uroepithelium-associated UPEC. All animals were consistently infected and reached high urine titres independent of inoculum titre. UTI89ΔfimH successfully colonized the bladders of 1/6 pigs compared to 6/6 for the wild-type strain. Intracellular UPEC were detectable in low numbers in whole bladder explants. In conclusion, low doses of UPEC are able to establish robust infections in pigs, similar to what is presumed in humans. T1F are critical for UPEC to surpass initial bottlenecks during infection but may be dispensable once infection is established. While supporting the conclusions from mice studies regarding a general importance of T1F in successfully infecting the host, the porcine UTI models’ natural high, more human-like, susceptibility to infection, allowed us to demonstrate a pivotal role of T1F in initial establishment of infection upon a realistic low-inoculum introduction of UPEC in the bladder.


2017 ◽  
Vol 66 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Judit Tóth ◽  
Ildikó Beke Debreceni ◽  
Mariann Berhés ◽  
Endre Hajdú ◽  
Ádám Deák ◽  
...  

1993 ◽  
Vol 92 (3) ◽  
pp. 1418-1424 ◽  
Author(s):  
M S Donnenberg ◽  
S Tzipori ◽  
M L McKee ◽  
A D O'Brien ◽  
J Alroy ◽  
...  

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document