scholarly journals Escherichia coli type-1 fimbriae are critical to overcome initial bottlenecks of infection upon low-dose inoculation in a porcine model of cystitis

Microbiology ◽  
2021 ◽  
Vol 167 (10) ◽  
Author(s):  
Kristian Stærk ◽  
Rasmus Birkholm Grønnemose ◽  
Thomas Kastberg Nielsen ◽  
Nicky Anúel Petersen ◽  
Yaseelan Palarasah ◽  
...  

Most uropathogenic Escherichia coli (UPEC) express type-1 fimbriae (T1F), a key virulence factor for urinary tract infection (UTI) in mice. Evidence that conclusively associates this pilus with uropathogenesis in humans has, however, been difficult to obtain. We used an experimental porcine model of cystitis to assess the role of T1F in larger mammals more closely related to humans. Thirty-one pigs were infected with UPEC strain UTI89 or its T1F deficient mutant, UTI89ΔfimH, at inoculum titres of 102 to 108 colony forming units per millilitre. Urine and blood samples were collected and analysed 7 and 14 days post-inoculation, and whole bladders were removed at day 14 and analysed for uroepithelium-associated UPEC. All animals were consistently infected and reached high urine titres independent of inoculum titre. UTI89ΔfimH successfully colonized the bladders of 1/6 pigs compared to 6/6 for the wild-type strain. Intracellular UPEC were detectable in low numbers in whole bladder explants. In conclusion, low doses of UPEC are able to establish robust infections in pigs, similar to what is presumed in humans. T1F are critical for UPEC to surpass initial bottlenecks during infection but may be dispensable once infection is established. While supporting the conclusions from mice studies regarding a general importance of T1F in successfully infecting the host, the porcine UTI models’ natural high, more human-like, susceptibility to infection, allowed us to demonstrate a pivotal role of T1F in initial establishment of infection upon a realistic low-inoculum introduction of UPEC in the bladder.

2012 ◽  
Vol 80 (8) ◽  
pp. 2802-2815 ◽  
Author(s):  
Sébastien Crépin ◽  
Sébastien Houle ◽  
Marie-Ève Charbonneau ◽  
Michaël Mourez ◽  
Josée Harel ◽  
...  

ABSTRACTThepstSCAB-phoUoperon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenicEscherichia coli(UPEC) strain CFT073, inactivation ofpstdecreased urinary tract colonization in CBA/J mice. Thepstmutant was deficient in production of type 1 fimbriae and showed decreased expression of thefimAstructural gene which correlated with differential expression of thefimB,fimE,ipuA, andipbAgenes, encoding recombinases, mediating inversion of thefimpromoter. The role offimdownregulation in attenuation of thepstmutant was confirmed using afimphase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, thepstmutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by thepstmutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.


2017 ◽  
Vol 199 (24) ◽  
Author(s):  
Sébastien Crépin ◽  
Gaëlle Porcheron ◽  
Sébastien Houle ◽  
Josée Harel ◽  
Charles M. Dozois

ABSTRACT The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC. This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model. IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics.


2008 ◽  
Vol 76 (9) ◽  
pp. 4129-4136 ◽  
Author(s):  
Mélanie A. M. Cortes ◽  
Julien Gibon ◽  
Nathalie K. Chanteloup ◽  
Maryvonne Moulin-Schouleur ◽  
Philippe Gilot ◽  
...  

ABSTRACT IbeA in extraintestinal pathogenic Escherichia coli (ExPEC) strains was previously described for its role in invasion. Here we investigated the role of IbeA and IbeT, encoded by a gene located downstream of ibeA, in the adhesion of the avian ExPEC strain BEN2908 to human brain microvascular endothelial cells (HBMEC). The ΔibeA mutant was less adhesive to HBMEC than the wild-type strain BEN2908 was. Because strain BEN2908 also expresses type 1 fimbriae, we measured the adhesion specifically due to IbeA by comparing the adhesive properties of a Δfim derivative of strain BEN2908 to those of a double Δfim ΔibeA mutant. No differences were observed, indicating that the reduction of adhesion in BEN2908 ΔibeA could be due to a decrease in type 1 fimbria expression. We indeed showed that the decreased adhesion of BEN2908 ΔibeA was correlated with a decrease in type 1 fimbria expression. Accordingly, more bacteria had a fim promoter orientated in the off position in a culture of BEN2908 ΔibeA than in a culture of BEN2908. Expression of fimB and fimE, two genes encoding recombinases participating in controlling the orientation of the fim promoter, was decreased in BEN2908 ΔibeA. A reduction of type 1 fimbria expression due to a preferential orientation of the fim promoter in the off position was also seen in an ibeT mutant of strain BEN2908. We finally suggest a role for IbeA and IbeT in modulating the expression of type 1 fimbriae through an as yet unknown mechanism.


2008 ◽  
Vol 190 (10) ◽  
pp. 3747-3756 ◽  
Author(s):  
Amy N. Simms ◽  
Harry L. T. Mobley

ABSTRACT Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression.


2001 ◽  
Vol 67 (1) ◽  
pp. 464-468 ◽  
Author(s):  
Laura Canesi ◽  
Carla Pruzzo ◽  
Renato Tarsi ◽  
Gabriella Gallo

ABSTRACT The role of type 1 fimbriae in the interactions betweenEscherichia coli and Mytilus galloprovincialisLam. hemocytes was evaluated. The association of fimbriated strain MG155 with hemocyte monolayers at 18°C was 1.5- and 3- to 4-fold greater than the association of unfimbriated mutant AAEC072 in artificial seawater and in hemolymph serum, respectively. Such differences were apparently due to different adhesive properties since MG155 adhered more efficiently than AAEC072 when hemocytes were incubated at 4°C to inhibit the internalization process. Hemolymph serum increased both association and adherence of MG155 two- to threefold but did not affect association and adherence of AAEC072. MG155 was also 1.5- to 1.7-fold more sensitive to killing by hemocytes than AAEC072, as evaluated by the number of culturable bacteria after 60 and 120 min of incubation. The role of type 1 fimbriae in MG155 interactions with hemocytes was confirmed by the inhibitory effect ofd-mannose. In in vivo experiments MG155 cells were cleared from circulating hemolymph more rapidly than AAEC072 cells were cleared. These results confirm that surface properties are crucial in influencing bacterial persistence and survival within mussel hemolymph.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2247
Author(s):  
Pawel Kallas ◽  
Håvard J Haugen ◽  
Nikolaj Gadegaard ◽  
John Stormonth-Darling ◽  
Mats Hulander ◽  
...  

Bacterial fimbriae are an important virulence factor mediating adhesion to both biotic and abiotic surfaces and facilitating biofilm formation. The expression of type 1 fimbriae of Escherichia coli is a key virulence factor for urinary tract infections and catheter-associated urinary tract infections, which represent the most common nosocomial infections. New strategies to reduce adhesion of bacteria to surfaces is therefore warranted. The aim of the present study was to investigate how surfaces with different nanotopography-influenced fimbriae-mediated adhesion. Surfaces with three different nanopattern surface coverages made in polycarbonate were fabricated by injection molding from electron beam lithography nanopatterned templates. The surfaces were constructed with features of approximately 40 nm width and 25 nm height with 100 nm, 250 nm, and 500 nm interspace distance, respectively. The role of fimbriae type 1-mediated adhesion was investigated using the E. coli wild type BW25113 and ΔfimA (with a knockout of major pilus protein FimA) and ΔfimH (with a knockout of minor protein FimH) mutants. For the surfaces with nanotopography, all strains adhered least to areas with the largest interpillar distance (500 nm). For the E. coli wild type, no difference in adhesion between surfaces without pillars and the largest interpillar distance was observed. For the deletion mutants, increased adhesion was observed for surfaces without pillars compared to surfaces with the largest interpillar distance. The presence of a fully functional type 1 fimbria decreased the bacterial adhesion to the nanopatterned surfaces in comparison to the mutants.


2007 ◽  
Vol 189 (15) ◽  
pp. 5523-5533 ◽  
Author(s):  
M. Chelsea Lane ◽  
Amy N. Simms ◽  
Harry L. T. Mobley

ABSTRACT Type 1 fimbriae and flagella have been previously shown to contribute to the virulence of uropathogenic Escherichia coli (UPEC) within the urinary tract. In this study, the relationship between motility and type 1 fimbrial expression was tested for UPEC strain CFT073 by examining the phenotypic effect of fimbrial expression on motility and the effect that induction of motility has on type 1 fimbrial expression. While constitutive expression of type 1 fimbriae resulted in a significant decrease in motility and flagellin expression (P < 0.0001), a loss of type 1 fimbrial expression did not result in increased motility. Additionally, hypermotility and flagellar gene over- and underexpression were not observed to affect the expression of type 1 fimbriae. Hence, it appeared that the relationship between type 1 fimbrial expression and motility is unidirectional, where the overexpression of type 1 fimbriae dramatically affects motility and flagellum expression but not vice versa. Moreover, the constitutive expression of type 1 fimbriae in UPEC cystitis isolate F11 and the laboratory strain E. coli K-12 MG1655 also resulted in decreased motility, suggesting that this phenomenon is not specific to CFT073 or UPEC in general. Lastly, by analyzing the repression of motility caused by constitutive type 1 fimbrial expression, it was concluded that the synthesis and presence of type 1 fimbriae at the bacterial surface is only partially responsible for the repression of motility, as evidenced by the partial restoration of motility in the CFT073 fim L-ON ΔfimAICDFGH mutant. Altogether, these data provide further insight into the complex interplay between type 1 fimbrial expression and flagellum-mediated motility.


2003 ◽  
Vol 71 (1) ◽  
pp. 494-503 ◽  
Author(s):  
Melha Mellata ◽  
Maryvonne Dho-Moulin ◽  
Charles M. Dozois ◽  
Roy Curtiss ◽  
Brigitte Lehoux ◽  
...  

ABSTRACT Avian pathogenic Escherichia coli (APEC) cause extraintestinal disease in avian species via respiratory tract infection. Virulence factors associated with APEC include type 1 and P fimbriae, curli, aerobactin, lipopolysaccharide (LPS), K1 capsular antigen, temperature-sensitive hemagglutinin (Tsh), and an uncharacterized pathogen-specific chromosomal region (the 0-min region). The role of these virulence factors in bacterial interaction with phagocytes was investigated by using mutants of three APEC strains, each belonging to one of the most predominant serogroups O1, O2, and O78. Bacterial cell interaction with avian phagocytes was tested with primary cultures of chicken heterophils and macrophages. The presence of type 1 fimbriae and, in contrast, the absence of P fimbriae, K1 capsule, O78 antigen, and the 0-min region promoted bacterial association with chicken heterophils and macrophages. The presence of type 1 and P fimbriae, O78 antigen, and the 0-min region seemed to protect bacteria against the bactericidal effect of phagocytes, especially heterophils. The tested virulence factors seemed to have a limited role in intracellular survival for up to 48 h in macrophages. Generally, opsonized and nonopsonized bacteria were eliminated to the same extent, but in some cases, unopsonized bacteria were eliminated to a greater extent than opsonized bacteria. These results confirm the important role of type 1 fimbriae in promotion of initial phagocytosis, but nevertheless indicate a role for type 1 fimbriae in the protection of bacteria from subsequent killing, at least in heterophils. The results also indicate a role for K1 capsule, O78 antigen, P fimbriae, and the 0-min region in initial avoidance of phagocytosis, but demonstrate an additional role for O78 antigen, P fimbriae, and the 0-min region in subsequent protection against the bactericidal effects of phagocytes after bacterial association has occurred.


Sign in / Sign up

Export Citation Format

Share Document