rigid cell wall
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Zheng Gong ◽  
Ming Cheng ◽  
Jose R. Botella

CRISPR/Cas-based genome editing technologies have the potential to fast-track large-scale crop breeding programs. However, the rigid cell wall limits the delivery of CRISPR/Cas components into plant cells, decreasing genome editing efficiency. Established methods, such as Agrobacterium tumefaciens-mediated or biolistic transformation have been used to integrate genetic cassettes containing CRISPR components into the plant genome. Although efficient, these methods pose several problems, including 1) The transformation process requires laborious and time-consuming tissue culture and regeneration steps; 2) many crop species and elite varieties are recalcitrant to transformation; 3) The segregation of transgenes in vegetatively propagated or highly heterozygous crops, such as pineapple, is either difficult or impossible; and 4) The production of a genetically modified first generation can lead to public controversy and onerous government regulations. The development of transgene-free genome editing technologies can address many problems associated with transgenic-based approaches. Transgene-free genome editing have been achieved through the delivery of preassembled CRISPR/Cas ribonucleoproteins, although its application is limited. The use of viral vectors for delivery of CRISPR/Cas components has recently emerged as a powerful alternative but it requires further exploration. In this review, we discuss the different strategies, principles, applications, and future directions of transgene-free genome editing methods.


2021 ◽  
Vol 2021 (12) ◽  
pp. pdb.prot101691
Author(s):  
Michael R. Green ◽  
Joseph Sambrook

Isolation of RNA from yeast is complicated by the need to first break the thick, rigid cell wall. The protocol provided here uses a cycle of heating and freezing of cells in the presence of phenol and the detergent sodium dodecyl sulfate (SDS). The extraction is performed in the presence of low salt so that, following separation of the aqueous and phenol phases by centrifugation, DNA can be collected from the interface while RNA remains in the aqueous phase. This protocol should yield ∼50–250 µg of RNA from 10 mL of culture. The RNA isolated using this approach is suitable for most follow-up applications such as northern blot hybridization, reverse transcriptase-polymerase chain reaction (RT-PCR), and cDNA construction.


2021 ◽  
Vol 22 (23) ◽  
pp. 12773
Author(s):  
Geon Joon Lee ◽  
Pradeep Lamichhane ◽  
Seong Jae Ahn ◽  
Seong Hwan Kim ◽  
Manesh Ashok Yewale ◽  
...  

This research investigated the capture of nitrate by magnesium ions in plasma-activated water (PAW) and its antifungal effect on the cell viability of the newly emerged mushroom pathogen Cryptococcus pseudolongus. Optical emission spectra of the plasma jet exhibited several emission bands attributable to plasma-generated reactive oxygen and nitrogen species. The plasma was injected directly into deionized water (DW) with and without an immersed magnesium block. Plasma treatment of DW produced acidic PAW. However, plasma-activated magnesium water (PA-Mg-W) tended to be neutralized due to the reduction in plasma-generated hydrogen ions by electrons released from the zero-valent magnesium. Optical absorption and Raman spectra confirmed that nitrate ions were the dominant reactive species in the PAW and PA-Mg-W. Nitrate had a concentration-dependent antifungal effect on the tested fungal cells. We observed that the free nitrate content could be controlled to be lower in the PA-Mg-W than in the PAW due to the formation of nitrate salts by the magnesium ions. Although both the PAW and PA-Mg-W had antifungal effects on C. pseudolongus, their effectiveness differed, with cell viability higher in the PA-Mg-W than in the PAW. This study demonstrates that the antifungal effect of PAW could be manipulated using nitrate capture. The wide use of plasma therapy for problematic fungus control is challenging because fungi have rigid cell wall structures in different fungal groups.


Author(s):  
P. W. H. K. P. Daulagala

L-form bacteria with modified or no cell walls are a special group of bacteria derived or induced from cell walled forms following suppression of their rigid cell wall. They have been used to establish non-pathogenic symbioses with a wide range of plants. These L-form-plant symbioses have been shown to confer resistance against the subsequent challenge of the associated plants by both fungal and bacterial pathogens. As the world population increases, the demand for food also increases and hence control of plant diseases is of paramount importance in producing enough agricultural crops to fulfil the food demand. Plant disease management using chemical fungicides and pesticides etc. is not an ecofriendly approach and hence researchers look for alternative options such as the use of biocontrol agents which are ecofriendly and sustainable. This review paper highlights the published information on the potential of applying L-form bacteria as a biological control agent in management of plant diseases caused by pathogenic microorganisms.


2021 ◽  
Vol 22 (17) ◽  
pp. 9222 ◽  
Author(s):  
Silvia Melina Velasquez ◽  
Xiaoyuan Guo ◽  
Marçal Gallemi ◽  
Bibek Aryal ◽  
Peter Venhuizen ◽  
...  

Size control is a fundamental question in biology, showing incremental complexity in plants, whose cells possess a rigid cell wall. The phytohormone auxin is a vital growth regulator with central importance for differential growth control. Our results indicate that auxin-reliant growth programs affect the molecular complexity of xyloglucans, the major type of cell wall hemicellulose in eudicots. Auxin-dependent induction and repression of growth coincide with reduced and enhanced molecular complexity of xyloglucans, respectively. In agreement with a proposed function in growth control, genetic interference with xyloglucan side decorations distinctly modulates auxin-dependent differential growth rates. Our work proposes that auxin-dependent growth programs have a spatially defined effect on xyloglucan’s molecular structure, which in turn affects cell wall mechanics and specifies differential, gravitropic hypocotyl growth.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 974
Author(s):  
Irina B. Ivshina ◽  
Maria S. Kuyukina ◽  
Anastasiia V. Krivoruchko ◽  
Elena A. Tyumina

Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with “unprofessional” parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites.


2021 ◽  
Author(s):  
Florent Masson ◽  
Xavier Pierrat ◽  
Bruno Lemaitre ◽  
Alexandre Persat

A rigid cell wall defines the morphology of most bacteria. MreB, a bacterial homologue of actin, plays a major role in coordinating cell wall biogenesis and defining cell shape. In contrast with most bacteria, the Mollicutes family is devoid of cell wall. As a consequence, many Mollicutes have undefined morphologies. Spiroplasma species are an exception as they robustly grow with a characteristic helical shape, but how they maintain their morphology remains unclear. Paradoxal to their lack of cell wall, the genome of Spiroplasma contains five homologues of MreB (SpMreBs). Since MreB is a homolog of actin and that short MreB filaments participate in its function, we hypothesize that SpMreBs form a polymeric cytoskeleton. Here, we investigate the function of SpMreB in forming a polymeric cytoskeleton by focusing on the Drosophila endosymbiont Spiroplasma poulsonii. We found that in vivo, Spiroplasma maintain a high concentration of all five MreB isoforms. By leveraging a heterologous expression system that bypasses the poor genetic tractability of Spiroplasma, we found that strong intracellular levels of SpMreb systematically produced polymeric filaments of various morphologies. Using co-immunoprecipitation and co-expression of fluorescent fusions, we characterized an interaction network between isoforms that regulate the filaments formation. Our results point to a sub-functionalization of each isoform which, when all combined in vivo, form a complex inner polymeric network that shapes the cell in a wall-independent manner. Our work therefore supports the hypothesis where MreB mechanically supports the cell membrane, thus forming a cytoskeleton.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 782
Author(s):  
Irina V. Agarkova ◽  
Leslie C. Lane ◽  
David D. Dunigan ◽  
Cristian F. Quispe ◽  
Garry A. Duncan ◽  
...  

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25–30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1962
Author(s):  
Aryan Morita ◽  
Thamir Hamoh ◽  
Alina Sigaeva ◽  
Neda Norouzi ◽  
Andreas Nagl ◽  
...  

Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus.


Sign in / Sign up

Export Citation Format

Share Document