scholarly journals Modifications in Gamma-aminobutyric Acid type A Receptor Subunit Gene Expression During Macrophage Differentiation and Propofol Administration in THP-1 Cells

Author(s):  
Tsukasa Kochiyama ◽  
Izumi Kawagoe ◽  
Ai Yamaguchi ◽  
Masataka Fukuda ◽  
Masakazu Hayashida

Abstract Background: Gamma-aminobutyric acid type A (GABAA) receptors are thought to play a role in the functioning of the immune system. GABAA receptors have 19 types of subunits, the components of which determine their physiological functions. However, the subunits that are expressed in immune cells during inflammation have not been fully investigated. Recent reports have shown that anesthetic agents may affect the gene expression of GABAA receptors subunits in immune cells. Therefore, we aimed to investigate the changes in GABAA receptor subunit gene expression during macrophage differentiation and propofol administration in order to clarify the relationship between the expression of GABAA receptors and the immunomodulatory effect of propofol.Methods: Human acute monocytic leukemia (THP-1) cells were differentiated into macrophage-like cells (M0 THP-1); subsequently, M0 THP-1 cells were differentiated into inflammatory M1 macrophage-like cells (M1 THP-1). Propofol was administered during the differentiation into M1 THP-1 cells. Using reverse transcriptase polymerase chain reaction, we examined which GABAA receptor subunit genes were expressed and whether there were changes in the gene expression during macrophage differentiation and propofol administration in THP-1 cells.Results: The expression of the α1, α4, β1, β2, γ1, and γ2 subunits increased during differentiation into M0 THP-1 cells. The expression of the α1, α4, β1, β2, γ2, and δ subunits decreased and that of the γ1 subunit increased during differentiation into M1 THP-1 cells. The gene expression of the α1, α4, and β2 subunits increased upon administering propofol during differentiation into M1 THP-1 cells.Conclusions: The gene expression of GABAA receptor subunits changed during macrophage differentiation in THP-1 cells. The expressions of α1 and α4 increased following propofol administration during the differentiation into M1 THP-1 cells, which may indicate that the GABAA receptor is involved in the immunosuppressive effects of propofol. This study can help in the choice of anesthetic agents for proinflammatory conditions such as highly-invasive surgery.

1999 ◽  
Vol 96 (17) ◽  
pp. 9891-9896 ◽  
Author(s):  
T. P. Bonnert ◽  
R. M. McKernan ◽  
S. Farrar ◽  
B. le Bourdelles ◽  
R. P. Heavens ◽  
...  

2008 ◽  
Vol 102 (1-3) ◽  
pp. 193
Author(s):  
Clement Zai ◽  
Arun Tiwari ◽  
Vincenzo De Luca ◽  
Greg W.H. Wong ◽  
James L. Kennedy

2007 ◽  
Vol 107 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Anders Fredriksson ◽  
Emma Pontén ◽  
Torsten Gordh ◽  
Per Eriksson

Background During the brain growth spurt, the brain develops and modifies rapidly. In rodents this period is neonatal, spanning the first weeks of life, whereas in humans it begins during the third trimester and continues 2 yr. This study examined whether different anesthetic agents, alone and in combination, administered to neonate mice, can trigger apoptosis and whether behavioral deficits occur later in adulthood. Methods Ten-day-old mice were injected subcutaneously with ketamine (25 mg/kg), thiopental (5 mg/kg or 25 mg/kg), propofol (10 mg/kg or 60 mg/kg), a combination of ketamine (25 mg/kg) and thiopental (5 mg/kg), a combination of ketamine (25 mg/kg) and propofol (10 mg/kg), or control (saline). Fluoro-Jade staining revealed neurodegeneration 24 h after treatment. The behavioral tests--spontaneous behavior, radial arm maze, and elevated plus maze (before and after anxiolytic)--were conducted on mice aged 55-70 days. Results Coadministration of ketamine plus propofol or ketamine plus thiopental or a high dose of propofol alone significantly triggered apoptosis. Mice exposed to a combination of anesthetic agents or ketamine alone displayed disrupted spontaneous activity and learning. The anxiolytic action of diazepam was less effective when given to adult mice that were neonatally exposed to propofol. Conclusion This study shows that both a gamma-aminobutyric acid type A agonist (thiopental or propofol) and an N-methyl-D-aspartate antagonist (ketamine) during a critical stage of brain development potentiated neonatal brain cell death and resulted in functional deficits in adulthood. The use of thiopental, propofol, and ketamine individually elicited no or only minor changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Tao ◽  
Zengqiang Chen ◽  
Jianhao Wu ◽  
Jun Chen ◽  
Yusen Chen ◽  
...  

Epilepsy is characterized by highly abnormal synchronous discharge of brain neurons, and ion channels are fundamental in the generation and modulation of neural excitability. Considering that abnormal methylation can either activate or repress genes, this study was designed to explore the DNA methylation signature of pathogenic genes encoding ion channels in temporal lobe epilepsy (TLE). In total, 38 TLE patients and 38 healthy controls were enrolled in the study, and genomic DNA and total protein of the lymphocytes were extracted from peripheral blood samples to assess methylation and protein levels. The DNA methylation levels of all 12 genes examined were significantly lower in the TLE group than in the control group. After false-positive correction, 83.3% (10/12) of these genes, namely, gamma-aminobutyric acid type A receptor subunit beta1 (GABRB1), gamma-aminobutyric acid type A receptor subunit beta2 (GABRB2), gamma-aminobutyric acid type A receptor subunit beta1 (GABRB3), glutamate ionotropic receptor NMDA type subunit 1 (GRIN1), glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B), hyperpolarization activated cyclic nucleotide gated potassium channel 1 (HCN1), potassium voltage-gated channel subfamily A member 2 (KCNA2), potassium voltage-gated channel subfamily B member 1 (KCNB1), and potassium sodium-activated channel subfamily T member 1 (KCNT1), were still differentially expressed. Among these ion channels, HCN1 and KCNA2 were selected to evaluate the effects of DNA methylation, and the levels of these proteins were inversely upregulated in the TLE group compared to the control group. As the genes identified as having differential methylation levels are involved in both excitatory and inhibitory ion channels, this study observed by binary logistic regression that hypermethylated GARAB1 was an independent risk factor for TLE, indicating that the overwhelming effect of ion channels on TLE is probably inhibitory from the perspective of DNA methylation. All these findings support the involvement of DNA methylation in TLE pathologies, but the mechanisms need to be further investigated.


Sign in / Sign up

Export Citation Format

Share Document