Results of Contracture Tests with Halothane, Caffeine, and Ryanodine Depend on Different Malignant Hyperthermia-associated Ryanodine Receptor Gene Mutations

2002 ◽  
Vol 97 (2) ◽  
pp. 345-350 ◽  
Author(s):  
Marko Fiege ◽  
Frank Wappler ◽  
Ralf Weisshorn ◽  
Mark Ulrich Gerbershagen ◽  
Markus Steinfath ◽  
...  

Background More than 20 mutations in the gene encoding for the ryanodine receptor (RYR1), a Ca2+ release channel of the skeletal muscle sarcoplasmic reticulum, have been found to be associated with malignant hyperthermia (MH). This study was designed to investigate the effects of different mutations in the RYR1 gene on contracture development in in vitro contracture tests (IVCT) with halothane, caffeine, and ryanodine. Methods Ninety-three MH-susceptible (MHS) patients, diagnosed by the standard IVCT with halothane and caffeine, were included in this prospective study. Surplus muscle specimens were used for an IVCT with 1 microm ryanodine. The contracture course during the ryanodine IVCT was described by the attainment of different time points: onset time of contracture and times when contracture reached 2 mN or 10 mN. In addition, all patients were screened for mutations of the RYR1 gene. Results In 36 patients, four different mutations of the RYR1 gene (C487-T, G1021-A, C1840-T, G7300-A) were found. The IVCT threshold concentrations of halothane and caffeine were lower in patients with the C487-T mutation compared with patients without a detected mutation in the RYR1 gene. In the IVCT with ryanodine, contracture levels of 2 mN and 10 mN were reached earlier in muscle specimens from patients with C487-T, C1840-T, and G7300-A mutations compared with specimens from patients with the G1021-A mutation and patients without detected mutation in the RYR1 gene. Conclusions The differences between the groups in the halothane and caffeine IVCT threshold concentrations and in the time course of contracture development in the ryanodine IVCT underline the hypothesis that certain mutations in the RYR1 gene could make the ryanodine receptor more sensitive to specific ligands. This may be an explanation for varying clinical symptoms of MH crisis in humans.

2003 ◽  
Vol 49 (5) ◽  
pp. 761-768 ◽  
Author(s):  
Angela Tammaro ◽  
Adele Bracco ◽  
Santolo Cozzolino ◽  
Maria Esposito ◽  
Antonietta Di Martino ◽  
...  

Abstract Background: Malignant hyperthermia (MH) is a fatal autosomal dominant pharmacogenetic disorder characterized by skeletal muscle hypertonicity that causes a sudden increase in body temperature after exposure to common anesthetic agents. The disease is genetically heterogeneous, with mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) at 19q13.1 accounting for up to 80% of the cases. To date, at least 42 RYR1 mutations have been described that cause MH and/or central core disease. Because the RYR1 gene is huge, containing 106 exons, molecular tests have focused on the regions that are more frequently mutated. Thus the causative defect has been identified in only a fraction of families as linked to chromosome 19q, whereas in others it remains undetected. Methods: We used denaturing HPLC (DHPLC) to analyze the RYR1 gene. We set up conditions to scan the 27 exons to identify both known and unknown mutations in critical regions of the protein. For each exon, we analyzed members from 52 families with positive in vitro contracture test results, but without preliminary selection by linkage analysis. Results: We identified seven different mutations in 11 MH families. Among them, three were novel MH alleles: Arg44Cys, Arg533Cys, and Val2117Leu. Conclusion: Because of its sensitivity and speed, DHPLC could be the method of choice for the detection of unknown mutations in the RYR1 gene.


2008 ◽  
Vol 108 (2) ◽  
pp. 208-215 ◽  
Author(s):  
Ayuk A. Anderson ◽  
Rosemary L. Brown ◽  
Brenda Polster ◽  
Neil Pollock ◽  
Kathryn M. Stowell

Background Mutations in the skeletal muscle ryanodine receptor gene may result in altered calcium release from sarcoplasmic reticulum stores, giving rise to malignant hyperthermia (MH). MH is a pharmacogenetic skeletal muscle disorder triggered by volatile anesthetics and depolarizing muscle relaxants. Diagnosis of MH is by in vitro contracture testing of quadriceps muscle. DNA analysis of causative mutations is limited by the large number of mutations that cosegregate with MH and the relatively few that have been biochemically characterized. Methods DNA sequence analysis was used to screen the skeletal muscle ryanodine receptor gene in MH-susceptible individuals. A diagnostic test using real-time polymerase chain reaction was developed to detect the mutation in individuals diagnosed as MH susceptible by in vitro contracture testing. The functional relevance of this mutation was examined in Epstein-Barr virus-immortalized B-lymphoblastoid cells. Results A novel ryanodine receptor mutation (cytosine 14997 thymine resulting in a histidine 4833 tyrosine substitution) was identified in pathology specimens from two patients with fatal MH reactions. B lymphocytes from patients with this mutation were approximately twofold more sensitive than MH-negative cells to activation with 4-chloro-m-cresol. The amount of Ca released from B lymphocytes of MH-susceptible patients was significantly greater than that released from cells of family members without this mutation. Haplotype analysis suggests that both families had a common ancestor. Conclusions DNA analysis to detect mutations which cosegregate with MH as well as biochemical assays on cultured lymphocytes obtained from blood can serve as useful diagnostic tools for MH susceptibility and genotype-phenotype correlations.


2019 ◽  
Vol 131 (5) ◽  
pp. 983-991 ◽  
Author(s):  
Carlos A. Ibarra Moreno ◽  
Sally Hu ◽  
Natalia Kraeva ◽  
Frank Schuster ◽  
Stephan Johannsen ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Malignant hyperthermia (MH) is a potentially lethal disorder triggered by certain anesthetics. Mutations in the ryanodine receptor 1 (RYR1) gene account for about half of MH cases. Discordance between the low incidence of MH and a high prevalence of mutations has been attributed to incomplete penetrance, which has not been quantified yet. The authors aimed to examine penetrance of MH-diagnostic RYR1 mutations and the likelihood of mutation carriers to develop MH, and to identify factors affecting severity of MH clinical expression. Methods In this multicenter case–control study, data from 125 MH pedigrees between 1994 and 2017 were collected from four European registries and one Canadian registry. Probands (survivors of MH reaction) and their relatives with at least one exposure to anesthetic triggers, carrying one diagnostic RYR1 mutation, were included. Penetrance (percentage of probands among all genotype-positive) and the probability of a mutation carrier to develop MH were obtained. MH onset time and Clinical Grading Scale score were used to assess MH reaction severity. Results The overall penetrance of nine RYR1 diagnostic mutations was 40.6% (93 of 229), without statistical differences among mutations. Likelihood to develop MH on exposure to triggers was 0.25 among all RYR1 mutation carriers, and 0.76 in probands (95% CI of the difference 0.41 to 0.59). Penetrance in males was significantly higher than in females (50% [62 of 124] vs. 29.7% [30 of 101]; P = 0.002). Males had increased odds of developing MH (odds ratio, 2.37; 95% CI, 1.36 to 4.12) despite similar levels of exposure to trigger anesthetics. Proband’s median age was 12 yr (interquartile range 6 to 32.5). Conclusions Nine MH-diagnostic RYR1 mutations have sex-dependent incomplete penetrance, whereas MH clinical expression is influenced by patient’s age and the type of anesthetic. Our quantitative evaluation of MH penetrance reinforces the notion that a previous uneventful anesthetic does not preclude the possibility of developing MH.


2006 ◽  
Vol 6 ◽  
pp. 1722-1730 ◽  
Author(s):  
Barbara W. Brandom

Study of the genetics of the malignant hyperthermia syndrome began in families in which both malignant hyperthermia (MH) episodes had been experienced and individuals had strongly positive contracture tests diagnostic of susceptibility to MH. Linkage studies associated this MH phenotype to the ryanodine receptor gene (RYR1) at chromosome 19q13.1 in many families. Although the MH phenotype is not always linked to chromosome 19, theRYR1has remained the focus of experimentation. Other candidate genes exist, but few MH-susceptible families have variants of these genes. Hundreds of MH-susceptible people have variants ofRYR1.


2012 ◽  
Vol 161 (1) ◽  
pp. 234-235
Author(s):  
Yosuke Kakisaka ◽  
Kazuhiro Haginoya ◽  
Yuko Takahashi ◽  
Tatsuhiro Ochiai ◽  
Ikuma Fujiwara ◽  
...  

Neurology ◽  
2018 ◽  
Vol 91 (24) ◽  
pp. 1092-1104 ◽  
Author(s):  
Takuya Konno ◽  
Koji Kasanuki ◽  
Takeshi Ikeuchi ◽  
Dennis W. Dickson ◽  
Zbigniew K. Wszolek

Since the discovery of CSF1R gene mutations in families with hereditary diffuse leukoencephalopathy with spheroids in 2012, more than 70 different mutations have been identified around the world. Through the analyses of mutation carriers, CSF1R-related leukoencephalopathy has been distinctly characterized clinically, radiologically, and pathologically. Typically, patients present with frontotemporal dementia-like phenotype in their 40s–50s, accompanied by motor symptoms, including pyramidal and extrapyramidal signs. Women tend to develop the clinical symptoms at a younger age than men. On brain imaging, in addition to white matter abnormalities, thinning of the corpus callosum, diffusion-restricted lesions in the white matter, and brain calcifications are hallmarks. Primary axonopathy followed by demyelination was suggested by pathology. Haploinsufficiency of colony-stimulating factor-1 receptor (CSF1R) is evident in a patient with a frameshift mutation, facilitating the establishment of Csf1r haploinsufficient mouse model. These mice develop clinical, radiologic, and pathologic phenotypes consistent with those of human patients with CSF1R mutations. In vitro, perturbation of CSF1R signaling is shown in cultured cells expressing mutant CSF1R. However, the underlying mechanisms by which CSF1R mutations selectively lead to white matter degeneration remains to be elucidated. Given that CSF1R mainly expresses in microglia, CSF1R-related leukoencephalopathy is representative of primary microgliopathies, of which microglia have a pivotal and primary role in pathogenesis. In this review, we address the current knowledge of CSF1R-related leukoencephalopathy and discuss the putative pathophysiology, with a focus on microglia, as well as future research directions.


Sign in / Sign up

Export Citation Format

Share Document