Continuous, Noninvasive, and Localized Microvascular Tissue Oximetry Using Visible Light Spectroscopy

2004 ◽  
Vol 100 (6) ◽  
pp. 1469-1475 ◽  
Author(s):  
David A. Benaron ◽  
Ilian H. Parachikov ◽  
Shai Friedland ◽  
Roy Soetikno ◽  
John Brock-Utne ◽  
...  

Background The authors evaluated the ability of visible light spectroscopy (VLS) oximetry to detect hypoxemia and ischemia in human and animal subjects. Unlike near-infrared spectroscopy or pulse oximetry (SpO2), VLS tissue oximetry uses shallow-penetrating visible light to measure microvascular hemoglobin oxygen saturation (StO2) in small, thin tissue volumes. Methods In pigs, StO2 was measured in muscle and enteric mucosa during normoxia, hypoxemia (SpO2 = 40-96%), and ischemia (occlusion, arrest). In patients, StO2 was measured in skin, muscle, and oral/enteric mucosa during normoxia, hypoxemia (SpO2 = 60-99%), and ischemia (occlusion, compression, ventricular fibrillation). Results In pigs, normoxic StO2 was 71 +/- 4% (mean +/- SD), without differences between sites, and decreased during hypoxemia (muscle, 11 +/- 6%; P < 0.001) and ischemia (colon, 31 +/- 11%; P < 0.001). In patients, mean normoxic StO2 ranged from 68 to 77% at different sites (733 measures, 111 subjects); for each noninvasive site except skin, variance between subjects was low (e.g., colon, 69% +/- 4%, 40 subjects; buccal, 77% +/- 3%, 21 subjects). During hypoxemia, StO2 correlated with SpO2 (animals, r2 = 0.98; humans, r2 = 0.87). During ischemia, StO2 initially decreased at -1.3 +/- 0.2%/s and decreased to zero in 3-9 min (r2 = 0.94). Ischemia was distinguished from normoxia and hypoxemia by a widened pulse/VLS saturation difference (Delta < 30% during normoxia or hypoxemia vs. Delta > 35% during ischemia). Conclusions VLS oximetry provides a continuous, noninvasive, and localized measurement of the StO2, sensitive to hypoxemia, regional, and global ischemia. The reproducible and narrow StO2 normal range for oral/enteric mucosa supports use of this site as an accessible and reliable reference point for the VLS monitoring of systemic flow.

2012 ◽  
Vol 112 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Shunsaku Koga ◽  
Yutaka Kano ◽  
Thomas J. Barstow ◽  
Leonardo F. Ferreira ◽  
Etsuko Ohmae ◽  
...  

The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that for microvascular O2 partial pressure (i.e., PmvO2, phosphorescence quenching) within the same muscle region (0.5∼1 mm depth) during transitions from rest to electrically stimulated contractions in the gastrocnemius of male Wistar rats ( n = 14). Both responses could be modeled by a time delay (TD), followed by a close-to-exponential change to the new steady level. However, the TD for the muscle deoxygenation profile was significantly longer compared with that for the phosphorescence-quenching PmvO2 [8.6 ± 1.4 and 2.7 ± 0.6 s (means ± SE) for the deoxygenation and PmvO2, respectively; P < 0.05]. The time constants (τ) of the responses were not different (8.8 ± 4.7 and 11.2 ± 1.8 s for the deoxygenation and PmvO2, respectively). These disparate (TD) responses suggest that the deoxygenation characteristics of Mb extend the TD, thereby increasing the duration (number of contractions) before the onset of muscle deoxygenation. However, this effect was insufficient to increase the mean response time. Somewhat differently, the muscle deoxygenation response measured using near-infrared spectroscopy in the deeper regions (∼5 mm depth) (∼50% type I Mb-rich, highly oxidative fibers) was slower (τ = 42.3 ± 6.6 s; P < 0.05) than the corresponding value for superficial muscle measured using visible light spectroscopy or PmvO2 and can be explained on the basis of known fiber-type differences in PmvO2 kinetics. These data suggest that, within the superficial and also deeper muscle regions, the τ of the deoxygenation signal may represent a useful index of local O2 extraction kinetics during exercise transients.


Resuscitation ◽  
2013 ◽  
Vol 84 (6) ◽  
pp. 843-847 ◽  
Author(s):  
Joshua C. Reynolds ◽  
David Salcido ◽  
Allison C. Koller ◽  
Matthew L. Sundermann ◽  
Adam Frisch ◽  
...  

2017 ◽  
Vol 22 (2) ◽  
pp. 025001 ◽  
Author(s):  
Martin B. Rasmussen ◽  
Vibeke R. Eriksen ◽  
Bjørn Andresen ◽  
Simon Hyttel-Sørensen ◽  
Gorm Greisen

2021 ◽  
Vol 41 (2) ◽  
pp. 108-111 ◽  
Author(s):  
Duygu Ece Kumbasar ◽  
Ahmed Hagiga ◽  
Omar Dawood ◽  
Juan Enrique Berner ◽  
Adam Blackburn

2005 ◽  
Vol 10 (3) ◽  
pp. 034017 ◽  
Author(s):  
Dean E. Myers ◽  
LeAnn D. Anderson ◽  
Roxanne P. Seifert ◽  
Joseph P. Ortner ◽  
Chris E. Cooper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document