The role of the right dorsolateral prefrontal cortex in visual change awareness

Neuroreport ◽  
2004 ◽  
Vol 15 (16) ◽  
pp. 2549-2552 ◽  
Author(s):  
Massimo Turatto ◽  
Marco Sandrini ◽  
Carlo Miniussi
2016 ◽  
Vol 113 (52) ◽  
pp. E8492-E8501 ◽  
Author(s):  
Roland G. Benoit ◽  
Daniel J. Davies ◽  
Michael C. Anderson

Imagining future events conveys adaptive benefits, yet recurrent simulations of feared situations may help to maintain anxiety. In two studies, we tested the hypothesis that people can attenuate future fears by suppressing anticipatory simulations of dreaded events. Participants repeatedly imagined upsetting episodes that they feared might happen to them and suppressed imaginings of other such events. Suppressing imagination engaged the right dorsolateral prefrontal cortex, which modulated activation in the hippocampus and in the ventromedial prefrontal cortex (vmPFC). Consistent with the role of the vmPFC in providing access to details that are typical for an event, stronger inhibition of this region was associated with greater forgetting of such details. Suppression further hindered participants’ ability to later freely envision suppressed episodes. Critically, it also reduced feelings of apprehensiveness about the feared scenario, and individuals who were particularly successful at down-regulating fears were also less trait-anxious. Attenuating apprehensiveness by suppressing simulations of feared events may thus be an effective coping strategy, suggesting that a deficiency in this mechanism could contribute to the development of anxiety.


2020 ◽  
Vol 31 (1) ◽  
pp. 184-200
Author(s):  
Stefan Schulreich ◽  
Lars Schwabe

Abstract Adaptive performance in uncertain environments depends on the ability to continuously update internal beliefs about environmental states. Recent correlative evidence suggests that a frontoparietal network including the dorsolateral prefrontal cortex (dlPFC) supports belief updating under uncertainty, but whether the dlPFC serves a “causal” role in this process is currently not clear. To elucidate its contribution, we leveraged transcranial direct current stimulation (tDCS) over the right dlPFC, while 91 participants performed an incentivized belief-updating task. Participants also underwent a psychosocial stress or control manipulation to investigate the role of stress, which is known to modulate dlPFC functioning. We observed enhanced monetary value updating after anodal tDCS when it was normatively expected from a Bayesian perspective. A model-based analysis indicates that this effect was driven by belief updating. However, we also observed enhanced non-normative value updating, which might have been driven instead by expectancy violation. Enhanced normative and non-normative value updating reflected increased vs. decreased Bayesian rationality, respectively. Furthermore, cortisol increases were associated with enhanced positive, but not with negative, value updating. The present study thereby sheds light on the causal role of the right dlPFC in the remarkable human ability to navigate uncertain environments by continuously updating prior knowledge following new evidence.


2021 ◽  
Author(s):  
Víctor Martínez-Pérez ◽  
Miriam Tortajada ◽  
Lucía B. Palmero ◽  
Guillermo Campoy ◽  
Luis J. Fuentes

Abstract BackgroundCurrent theoretical accounts on the oscillatory nature of sustained attention predict that entrainment via transcranial alternating current stimulation (tACS) at alpha and theta frequencies on the frontoparietal network could prevent the drops in vigilance across time-on-task. Nonetheless, most previous studies have neglected both the fact that vigilance comprises two dissociable components (i.e. arousal and executive vigilance) and the potential role of differences in arousal baseline. MethodWe examined the effects of theta- and alpha-tACS over the right dorsolateral prefrontal cortex on both components of vigilance and on participants that differed in arousal baseline according to their chronotype and the time of testing. Intermediate-types performed the vigilance tasks when their arousal baseline was at the optimal level, whereas evening-types performed the vigilance tasks when their arousal baseline was at non-optimal levels. ResultsBoth theta- and alpha-tACS improved arousal vigilance, whereas alpha-tACS, but not theta-tACS, improved accuracy and attenuated the typical vigilance decrement in the executive vigilance task. Importantly, these stimulation effects were only found when arousal baseline was low (i.e., with evening-types performing the tasks at their non-optimal time of day).ConclusionThe results support the multicomponent view of vigilance, the relevance of heeding individual differences in arousal baseline, and the role of alpha oscillations as a long-range cortical scale synchronization mechanism that compensates the decrements in performance as a function of time-on-task by exerting and maintaining cognitive control attributed to activation of the frontoparietal network.


2018 ◽  
Vol 60 (4) ◽  
pp. 288-299 ◽  
Author(s):  
Hiroshi Shibata ◽  
Takuya Onuma ◽  
Yasuhiro Takeshima ◽  
Yuwadee Penwannakul ◽  
Nobuyuki Sakai

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Víctor Martínez-Pérez ◽  
Miriam Tortajada ◽  
Lucía B. Palmero ◽  
Guillermo Campoy ◽  
Luis J. Fuentes

AbstractCurrent theoretical accounts on the oscillatory nature of sustained attention predict that entrainment via transcranial alternating current stimulation (tACS) at alpha and theta frequencies on specific areas of the prefrontal cortex could prevent the drops in vigilance across time-on-task. Nonetheless, most previous studies have neglected both the fact that vigilance comprises two dissociable components (i.e., arousal and executive vigilance) and the potential role of differences in arousal levels. We examined the effects of theta- and alpha-tACS over the right dorsolateral prefrontal cortex in both components of vigilance and in participants who differed in arousal level according to their chronotype and time of testing. Intermediate-types performed the vigilance tasks when their arousal level was optimal, whereas evening-types performed the vigilance tasks when their arousal levels were non-optimal. Both theta- and alpha-tACS improved arousal vigilance in the psychomotor vigilance task (PVT), whereas alpha-tACS, but not theta-tACS, improved executive vigilance in the sustained attention to response task (SART), and counteracted the typical vigilance decrement usually observed in this task. Importantly, these stimulation effects were only found when arousal was low (i.e., with evening-types performing the tasks at their non-optimal time of day). The results support the multicomponent view of vigilance, the relevance of heeding individual differences in arousal, and the role of alpha oscillations as a long-range cortical scale synchronization mechanism that compensates the decrements in performance as a function of time-on-task by exerting and maintaining cognitive control attributed to activation of the right dorsolateral prefrontal cortex.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Daniela Mannarelli ◽  
Caterina Pauletti ◽  
Antonello Grippo ◽  
Aldo Amantini ◽  
Vito Augugliaro ◽  
...  

Phasic alertness represents the ability to increase response readiness to a target following an external warning stimulus. Specific networks in the frontal and parietal regions appear to be involved in the alert state. In this study, we examined the role of the right dorsolateral prefrontal cortex (DLPFC) during the attentional processing of a stimulus using a cued double-choice reaction time task. The evaluation of these processes was conducted by means of Event-Related Potentials (ERPs), in particular by using the Contingent Negative Variation (CNV), and repetitive 1-Hz Transcranial Magnetic Stimulation (rTMS). Transient virtual inhibition of the right DLPFC induced by real 1-Hz rTMS stimulation led to a significant decrease in total CNV and W1-CNV areas if compared with the basal and post-sham rTMS conditions. Reaction times (RTs) did not decrease after inhibitory rTMS, but they did improve after sham stimulation. These results suggest that the right DLPFC plays a crucial role in the genesis and maintenance of the alerting state and learning processes.


Sign in / Sign up

Export Citation Format

Share Document