Biosynthesis of constitutive nitric oxide synthase-derived nitric oxide attenuates coronary vasoconstriction and myocardial depression in a model of septic heart failure induced by Staphylococcus aureus α-toxin

2001 ◽  
Vol 29 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Ulrich Grandel ◽  
Ulf Sibelius ◽  
Jan Schrickel ◽  
Detlef Schmidt ◽  
Michael Buerke ◽  
...  
Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


1997 ◽  
Vol 110 (2) ◽  
pp. 77-82 ◽  
Author(s):  
Masayuki UCHIDA ◽  
Kei MATSUEDA ◽  
Yumi KATO ◽  
Ryousuke SHODA ◽  
Shigeru YAMATO ◽  
...  

Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Heng-Jie Cheng ◽  
Tiankai Li ◽  
Che Ping Cheng

Background: Sildenafil (SIL), a selective inhibitor of PDE5 has been shown to exert profound beneficial effects in heart failure (HF). Recently we further found that SIL caused regression of cardiac dysfunction in a rat model with isoproterenol (ISO)-induced progressive HF. However, the molecular basis is unclear. We hypothesized that reversal of HF-induced detrimental alterations on the expressions of cardiac SR Ca 2+ -ATPase (SERCA2a), β-adrenergic receptors (AR) and nitric oxide synthase (NOS) isoforms by SIL may play a key role for its salutary role in HF. Methods: Left ventricular (LV) and myocyte function and the protein levels of myocyte β 1 - and β 3 - AR, SERCA2a, phospholamban (PLB) and three NOS were simultaneously evaluated in 3 groups of male rats (6/group): HF , 3 months (M) after receiving ISO (170 mg/kg sq for 2 days); HF/SIL , 2 M after receiving ISO, SIL (70 μg/kg/day sq via mini pump) was initiated and given for 1 M; and Controls (C). Results: Compared with controls, ISO-treated rats progressed to severe HF at 3 M after ISO followed by significantly decreased LV contractility (E ES , HF: 0.7 vs C: 1.2 mmHg/μl) and slowed LV relaxation, reductions in the peak velocity of myocyte shortening (77 vs 136 μm/sec), relengthening (62 vs 104 μm/sec) and [Ca 2+ ] iT (0.15 vs 0.24) accompanied by a diminished myocyte inotropic response to β-AR agonist, ISO (10 -8 M). These abnormalities were associated with concomitant significant decreases in myocyte protein levels of β 1 -AR (0.23 vs 0.64), SERCA2a (0.46 vs 0.80), PLB Ser16 /PLB ratio (0.24 vs 0.40) and eNOS (0.28 vs 0.46), but significantly increases in protein levels of β 3 -AR (0.29 vs 0.10) and iNOS (0.18 vs 0.08) with relatively unchanged nNOS. Chronic SIL prevented the HF-induced decreases in LV and myocyte contraction, relaxation, peak [Ca 2+ ] iT , and restored normal myocyte contractile response to ISO stimulation. With SIL, protein levels of myocyte β 1 - and β 3 -AR, SERCA2a were restored close to control values, but eNOS was significantly elevated than controls (0.77). Conclusions: Chronic SIL prevents HF-caused downregulation of cardiac β 1 -AR and reverse contrast changes between iNOS and β 3 -AR with SERCA 2a and eNOS expression, leading to the preservation of LV and myocyte function, [Ca 2+ ] iT , and β-adrenergic reserve.


Sign in / Sign up

Export Citation Format

Share Document