Abstract 15295: Molecular Mechanism of Chronic Sildenafil-Caused Regression of Heart Failure: Effects on the Express of Cardiac SR Ca2+-ATPase, Subtype of β-Adrenergic Receptors and Nitric Oxide Synthase Isoforms

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Heng-Jie Cheng ◽  
Tiankai Li ◽  
Che Ping Cheng

Background: Sildenafil (SIL), a selective inhibitor of PDE5 has been shown to exert profound beneficial effects in heart failure (HF). Recently we further found that SIL caused regression of cardiac dysfunction in a rat model with isoproterenol (ISO)-induced progressive HF. However, the molecular basis is unclear. We hypothesized that reversal of HF-induced detrimental alterations on the expressions of cardiac SR Ca 2+ -ATPase (SERCA2a), β-adrenergic receptors (AR) and nitric oxide synthase (NOS) isoforms by SIL may play a key role for its salutary role in HF. Methods: Left ventricular (LV) and myocyte function and the protein levels of myocyte β 1 - and β 3 - AR, SERCA2a, phospholamban (PLB) and three NOS were simultaneously evaluated in 3 groups of male rats (6/group): HF , 3 months (M) after receiving ISO (170 mg/kg sq for 2 days); HF/SIL , 2 M after receiving ISO, SIL (70 μg/kg/day sq via mini pump) was initiated and given for 1 M; and Controls (C). Results: Compared with controls, ISO-treated rats progressed to severe HF at 3 M after ISO followed by significantly decreased LV contractility (E ES , HF: 0.7 vs C: 1.2 mmHg/μl) and slowed LV relaxation, reductions in the peak velocity of myocyte shortening (77 vs 136 μm/sec), relengthening (62 vs 104 μm/sec) and [Ca 2+ ] iT (0.15 vs 0.24) accompanied by a diminished myocyte inotropic response to β-AR agonist, ISO (10 -8 M). These abnormalities were associated with concomitant significant decreases in myocyte protein levels of β 1 -AR (0.23 vs 0.64), SERCA2a (0.46 vs 0.80), PLB Ser16 /PLB ratio (0.24 vs 0.40) and eNOS (0.28 vs 0.46), but significantly increases in protein levels of β 3 -AR (0.29 vs 0.10) and iNOS (0.18 vs 0.08) with relatively unchanged nNOS. Chronic SIL prevented the HF-induced decreases in LV and myocyte contraction, relaxation, peak [Ca 2+ ] iT , and restored normal myocyte contractile response to ISO stimulation. With SIL, protein levels of myocyte β 1 - and β 3 -AR, SERCA2a were restored close to control values, but eNOS was significantly elevated than controls (0.77). Conclusions: Chronic SIL prevents HF-caused downregulation of cardiac β 1 -AR and reverse contrast changes between iNOS and β 3 -AR with SERCA 2a and eNOS expression, leading to the preservation of LV and myocyte function, [Ca 2+ ] iT , and β-adrenergic reserve.

2021 ◽  

Background: Growth hormone-releasing peptides (GHRP) have been reported to possess cardioprotective properties; nonetheless, their mechanisms of action are still not very clear. Objectives: Some studies have suggested that modulation of endothelial nitric oxide synthase (eNOS) and the upregulation of nitric oxide (NO) are cardioprotective. Therefore, the present study strived to test the hypothesis that a potent GHRP analog (hexarelin) could increase serum nitric oxide level and regulate myocardial eNOS to alleviate the development of heart failure. Methods: Myocardial infarction-induced heart failure in rats was established by permanent coronary artery ligation. The sham group, control group, and heart failure group all received normal saline (100 µg/kg; SC BID; 30days), while the rats in the hexarelin treatment group were treated with hexarelin (100 µg/kg, SC BID, 30 days). The rats were tested for myocardial apoptosis, oxidative stress, left ventricular function, various molecular analyses, as well as pathological and structural myocardial changes. Results: Hexarelin treatment improved contractile function and attenuated myocardial histopathological damages, oxidative stress, fibrosis, as well as apoptosis. All these were accompanied by the upregulation of myocardial eNOS and an increase in serum NO concentration. Conclusion: As evidenced by the obtained results, the anti-cardiac failure capacity of hexarelinin in a rat model is mediated by an increase in serum nitric oxide level and the up-modulation of myocardial eNOS; therefore, they can be considered therapeutic targets against heart failure.


2007 ◽  
Vol 293 (5) ◽  
pp. H2650-H2658 ◽  
Author(s):  
Xavier Loyer ◽  
Patricia Oliviero ◽  
Thibaud Damy ◽  
Estelle Robidel ◽  
Françoise Marotte ◽  
...  

Clinical studies have documented sex differences in left ventricular (LV) hypertrophy patterns, but the mechanisms are so far poorly defined. This study aimed to determine whether 1) severe pressure overload altered expression and/or activity of cardiac constitutive nitric oxide synthase (NOS1 and NOS3) and 2) these changes were modulated according to sex. Analyses were performed 0.4–20 wk after thoracic aortic constriction (TAC) in male and female Wistar rats. Male rats with TAC exhibited early signs of cardiac dysfunction, as shown by echocardiographic and LV end-diastolic pressure measurements, whereas females with TAC exhibited higher LV hypertrophy (+96% vs. males at 20 wk; P < 0.05). After TAC, cardiac NOS1 expression was rapidly induced (0.4 wk) and stable afterward in males ( P < 0.05 vs. sham groups), whereas it was delayed in females. Accordingly, specific NOS1 activity was increased by 2 wk in male rats with TAC (+122%; P < 0.001 vs. sham groups) and only by 20 wk in females (+220%; P < 0.001 vs. sham groups). NOS1 activity was correlated with NOS1 level. Regarding cardiac NOS3, expression was unaffected by TAC, and the decrease in activity observed at early and late times in male and female rats with TAC, respectively, is shown to be related to NOS3 allosteric regulator caveolin-1 level. The data demonstrated a unique sex-dependent regulation of the constitutive NOSs in response to TAC in rats; such a difference might play a role in the sex-dependent adaptability of the heart in response to pressure overload.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Tiankai Li ◽  
Heng-Jie Cheng ◽  
Shadi A Qasem ◽  
Michael Callahan ◽  
Wei-Min Li ◽  
...  

Background: We have shown that Sildenafil (SIL), a selective PDE5 inhibitor reversed left ventricular (LV) dysfunction and β- adrenergic receptors (AR) desensitization in heart failure (HF). However the mechanism is not yet clear. Recent evidence suggests that normal myocardial performance depend on the balance in cardiomyocyte β 3 -, β 1 -, and β 2 -AR. Pivotal restructuring of β-AR system resulting in decline of β-adrenergic reserve plays a crucial role in the development of HF. We assessed the hypothesis that chronic SIL would prevent HF-induced abnormalities of β-AR subtype-stimulated regulation on intrinsic LV myocyte function and [Ca 2+ ] i regulation, thus restoring cardiac function. Methods: Studies were conducted in 3 groups (10/group) of rats: 1) HF, 12 weeks (W) after receiving isoproterenol (ISO) (170 mg/kg sq for 2 days); 2) HF/SIL, 8W after receiving ISO, SIL (70 μg/kg/day sq via mini pump) was initiated and given for 1 M; and 3) controls. After 12W, we compared LV myocyte contractile and [Ca 2+ ] iT responses to β-AR subtype stimulation by random exposure of myocytes to ISO (10 -8 M) or a selective β 1 -, β 2 -, or β 3 -agonist, Norepinephrine (NE, 10 -7 M), Zinterol (ZIN, 10 -5 M) and BRL-37,344 (BRL, 10 -8 M), respectively, during drug superfusion. Results: Only ISO-treated rats had HF showed 46% decreased LV contractility (E ES ) and extensive LV myocardium fibrosis. Compared with normal myocytes (N), in HF myocytes, basal cell contractility (dL/dt max , HF: 77 vs N: 136 μm/s), relaxation and [Ca 2+ ] iT all significantly decreased. ISO-stimulated dL/dt max (31% vs 67%) was attenuated accompanied by a diminished NE-mediated increase in dL/dt max (13% vs 49%), but enhanced BRL-induced decreases in dL/dt max (-29% vs -16%).The response of dL/dt max (25% vs 15%) to ZIN was increased. Importantly, in HF/SIL myocytes, the basal dL/dt max (139 μm/s) and [Ca 2+ ] iT remained close to control values with preserved β-stimulated positive modulation on cell contraction. The increases in dL/dt max in response to ISO (70%) and NE (44%) were similar as in normal myocytes, but repose to ZIN (27%) was enhanced. Conclusions: Chronic SIL reverses β-adrenergic signaling defects, resensitizing the β-AR subtype system modulation on LV myocytes function, thus playing a salutary role in HF.


Sign in / Sign up

Export Citation Format

Share Document