In-situ Gamma-ray Site Characterization of the Tatum Salt Dome Test Site in Lamar County, Mississippi

1992 ◽  
Vol 62 (6) ◽  
pp. 571-575 ◽  
Author(s):  
S. H. Faller
Author(s):  
Thomas Vienken ◽  
Manuel Kreck ◽  
Jörg Hausmann ◽  
Ulrike Werban ◽  
Peter Dietrich

Solving complex hydrogeological problems often requires a thorough understanding of (hydro-) geological subsurface conditions. This is especially true for sedimentary deposits with complex architecture, where lithology and/or hydraulic properties can significantly vary over short horizontal and vertical distances. At these sites, a traditional, solely sample-based investigation approach is often not applicable due to limited data accuracy, resolution, and efficiency. Instead, an adapted investigation approach is required that combines exploration technologies of different resolution and investigation scales. This paper aims to demonstrate the feasibility of such a multi-scale approach for the characterization of a test site near the city of Löbnitz, Germany, that is comprised of heterogeneous alluvial deposits. Our focus is on site characterization in terms of lithology and hydraulic properties, as well as on the delineation and characterization of an aggradated oxbow as a typical example of a small scale geological structure.


Author(s):  
E. Piegari ◽  
J. I. Gossn ◽  
Á. Juárez ◽  
V. Barraza ◽  
G. González Trilla ◽  
...  

Abstract. In the context of HYPERNETS project, which is developing a relatively low cost hyperspectral radiometer (and associated pointing system and embedded calibration device for automated measurement of water and land bidirectional reflectance), the tidal coastal marsh in the Mar Chiquita (Argentina) lagoon is being characterized as a test site for validation of radiometric variables. High quality in situ measurements will be available at all spectral bands at this site (and other sites over land and water around the world) for the validation of the surface reflectance data issued from all earth observation missions. This site, dominanted by Sporobolus densiflorus vegetation, is a coastal habitat that provides ecosystem services essential to people and the environment. There is evidence that growth and photosynthetic apparatus of S. densiflorus is negatively affected by the herbicide glyphosate, which is extensively used in the Argentinian agricultural production. As a way to monitor this risk, in this work a theoretical study was performed to establish if it is possible to estimate the chlorophyll content (Ca+b in S. densiflorus), which concentrations are known to be affected by the herbicide, using hyperspectral reflectance. Signatures recorded in situ plus other parameters obtained from a biochemical characterization of the plant were used to obtain a simulated reflectance with the radiative transfer model PROSAIL. Then, a BaseLine Residual approach, based on close band triplets, was proposed to retrieve Ca+b. As a result, we found that it is possible to distinguish between two levels of Ca+b.


DYNA ◽  
2018 ◽  
Vol 85 (206) ◽  
pp. 211-219 ◽  
Author(s):  
Breno Padovezi Rocha ◽  
Heraldo Luiz Giacheti

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Sign in / Sign up

Export Citation Format

Share Document