Role of Calcium in Angiotensin II-Induced Prostaglandin Release and DNA Synthesis in Rat Vascular Smooth Muscle Cells

1996 ◽  
Vol 27 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Rose-Marie Catalioto ◽  
Anna Rita Renzetti ◽  
Marco Criscuoli ◽  
Lucia Morbidelli ◽  
Alessandro Subissi
2012 ◽  
Vol 302 (5) ◽  
pp. C748-C756 ◽  
Author(s):  
Bo Yang ◽  
Tomasz Gwozdz ◽  
Joanna Dutko-Gwozdz ◽  
Victoria M. Bolotina

Store-operated Ca2+ entry (SOCE) is important for multiple functions of vascular smooth muscle cells (SMC), which, depending of their phenotype, can resemble excitable and nonexcitable cells. Similar to nonexcitable cells, Orai1 was found to mediate Ca2+-selective (CRAC-like) current and SOCE in dedifferentiated cultured SMC and smooth muscle-derived cell lines. However, the role of Orai1 in cation-selective store-operated channels (cat-SOC), which are responsible for SOCE in primary SMC, remains unclear. Here we focus on primary SMC, and assess the role of Orai1 and Ca2+-independent phospholipase A2 (iPLA2β, or PLA2G6) in activation of cat-SOC current ( Icat-SOC), SOCE, and SMC proliferation. Using molecular, electrophysiological, imaging, and functional approaches, we demonstrate that molecular knockdown of either Orai1 or iPLA2β leads to similar inhibition of the whole cell cat-SOC current and SOCE in primary aortic SMC and results in significant reduction in DNA synthesis and impairment of SMC proliferation. This is the first demonstration that Orai1 and iPLA2β are equally important for cat-SOC, SOCE, and proliferation of primary aortic SMC.


1993 ◽  
Vol 71 (5) ◽  
Author(s):  
Y. Ko ◽  
A. Sachinidis ◽  
A.J. Wieczorek ◽  
M. Appenheimer ◽  
R. D�sing ◽  
...  

1998 ◽  
Vol 39 (4) ◽  
pp. 561-561 ◽  
Author(s):  
Chikara Satoh ◽  
Noboru Fukuda ◽  
Atsushi Kubo ◽  
Hirobumi Kishioka ◽  
Mari Nakayama ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Si-yu Zeng ◽  
Jing-fei Luo ◽  
Hai-yan Quan ◽  
Yun-bin Xiao ◽  
Yu-huan Liu ◽  
...  

Objectives. Protein arginine methyltransferase 2 (PRMT2) protects against vascular injury-induced intimal hyperplasia; however, little is known about the role of PRMT2 in angiotensin II (Ang II)-induced VSMCs proliferation and inflammation. This research aims to determine whether PRMT2 inhibits Ang II-induced proliferation and inflammation of vascular smooth muscle cells (VSMCs). Materials and Methods. PRMT2 overexpression was used to elucidate the role of PRMT2 in Ang II-induced VSMCs proliferation and inflammation. Western blotting and reverse transcriptional PCR were adopted to detect protein and mRNA expression severally. Cell viability was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and cell cycle distribution by flow cytometry. Results. Ang II significantly reduced mRNA and protein levels of PRMT2 in VSMCs in time-dependent and dose-dependent manner. Results of PRMT2 overexpression indicated that PRMT2 inhibited proliferation of VSMCs stimulated with 100 nmol/L Ang II for 24 hours. Furthermore, overexpression of PRMT2 reduced Ang II-induced production of proinflammatory cytokines such as interleukin 6 (IL-6) and interleukin 1β (IL-1β) in VSMCs. Conclusions. These findings suggest that PRMT2 alleviates Ang II-induced VSMCs proliferation and inflammation, providing a new mechanism about how Ang II mediated VSMCs proliferation and inflammation.


Author(s):  
Vanessa Truong ◽  
Madhu B Anand-Srivastava ◽  
Ashok K Srivastava

Cyclic adenosine monophosphate response element (CRE) binding protein (CREB) is a nuclear transcription factor that regulates the transcription of several genes containing the CRE sites in their promoters. CREB is activated by phosphorylation on a key serine residue, Ser 311, in response to a wide variety of extracellular stimuli including angiotensin II (Ang II). Ang II is an important vasoactive peptide and mitogen for vascular smooth muscle cells (VSMC) that in addition to regulating the contractile response in VSMC also plays an important role in phenotypic switch of vascular smooth muscle cells (VSMC) from contractile to a synthetic state. The synthetic VSMC are known to exhibit proliferative and migratory properties due to hyperactivation of Ang II-induced signaling events. Ang II has been shown to induce CREB phosphorylation/activation and transcription of genes implicated in proliferation, growth and migration. Here, we have highlighted some key studies that have demonstrated an important role of CREB in Ang II-mediated gene transcription, proliferation, hypertrophy and migration of VSMC.


Sign in / Sign up

Export Citation Format

Share Document