Resistance exercise prevents plantar flexor deconditioning during bed rest

1997 ◽  
Vol 29 (11) ◽  
pp. 1462-1468 ◽  
Author(s):  
MARCAS M. BAMMAN ◽  
GARY R. HUNTER ◽  
BRUCE R. STEVENS ◽  
MARK E. GUILLIAMS ◽  
MICHAEL C. GREENISEN
1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1994 ◽  
Vol 267 (2) ◽  
pp. R365-R371 ◽  
Author(s):  
J. K. Linderman ◽  
K. L. Gosselink ◽  
F. W. Booth ◽  
V. R. Mukku ◽  
R. E. Grindeland

Unweighting of rat hindlimb muscles results in skeletal muscle atrophy, decreased protein synthesis, and reduced growth hormone (GH) secretion. Resistance exercise (ladder climbing) and GH treatment partially attenuate skeletal muscle atrophy in hypophysectomized hindlimb-suspended rats. It was hypothesized that a combination of multiple bouts of daily resistance exercise and GH (1 mg.kg-1.day-1) would prevent skeletal muscle atrophy in growing nonhypophysectomized hindlimb-suspended rats. Hindlimb suspension decreased the absolute (mg/pair) and relative (mg/100 g body wt) weights of the soleus, a slow-twitch plantar flexor, by 30 and 21%, respectively, and the absolute and relative weights of the gastrocnemius, a predominantly fast-twitch plantar flexor, by 20 and 11%, respectively (P < 0.05). Exercise did not increase soleus mass but attenuated loss of relative wet weight in the gastrocnemius muscles of hindlimb-suspended rats (P < 0.05). Hindlimb suspension decreased gastrocnemius myofibrillar protein content and synthesis (mg/day) by 26 and 64%, respectively (P < 0.05). The combination of exercise and GH attenuated loss of gastrocnemius myofibrillar protein content and synthesis by 70 and 23%, respectively (P < 0.05). Results of the present investigation indicate that a combination of GH and resistance exercise attenuates atrophy of unweighted fast-twitch skeletal muscles.


2001 ◽  
Vol 11 (s1) ◽  
pp. S150-S163 ◽  
Author(s):  
Peter A. Farrell

Skeletal muscle proteins are constantly being synthesized and degraded, and the net balance between synthesis and degradation determines the resultant muscle mass. Biochemical pathways that control protein synthesis are complex, and the following must be considered: gene transcription, mRNA splicing, and transport to the cytoplasm; specific amino acyl-tRNA, messenger (mRNA), ribosomal (rRNA) availability; amino acid availability within the cell; the hormonal milieu; rates of mRNA translation; packaging in vesicles for some types of proteins; and post-translational processing such as glycation and phosphorylation/dephosphorylation. Each of these processes is responsive to the need for greater or lesser production of new proteins, and many states such as sepsis, uncontrolled diabetes, prolonged bed-rest, aging, chronic alcohol treatment, and starvation cause marked reductions in rates of skeletal muscle protein synthesis. In contrast, acute and chronic resistance exercise cause elevations in rates of muscle protein synthesis above rates found in nondiseased rested organisms, which are normally fed. Resistance exercise may be unique in this capacity. This chapter focuses on studies that have used exercise to elucidate mechanisms that explain elevations in rates of protein synthesis. Very few studies have investigated the effects of aging on these mechanisms; however, the literature that is available is reviewed.


Author(s):  
Eric Belin de Chantemele ◽  
St�phane Blanc ◽  
Natacha Pellet ◽  
Monique Duvareille ◽  
Guido Ferretti ◽  
...  

2020 ◽  
Vol 8 (18) ◽  
Author(s):  
Madoka Ogawa ◽  
Daniel L. Belavý ◽  
Akito Yoshiko ◽  
Gabriele Armbrecht ◽  
Tanja Miokovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document