Induction of Xenoreactive CD4+ T-Cell Anergy by Suppressor CD8+CD28??? T Cells. Transplantation 2000; 69: 1304.

2000 ◽  
Vol 69 (7) ◽  
pp. 1233-1234 ◽  
Author(s):  
T. Mohanakumar Xiao-Chun Xu Andr??s Jaramillo
Keyword(s):  
T Cells ◽  
T Cell ◽  
2017 ◽  
Vol 137 (5) ◽  
pp. S24
Author(s):  
H. Hamidullah ◽  
S. Roy ◽  
A. Anshu ◽  
W. Kittipongdaja ◽  
S.M. Schieke

1996 ◽  
Vol 184 (1) ◽  
pp. 19-29 ◽  
Author(s):  
H Groux ◽  
M Bigler ◽  
J E de Vries ◽  
M G Roncarolo

Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin (IL) 10, specifically failed to proliferate after restimulation with the same alloantigens. A comparable state of T cell unresponsiveness could be induced by activation of CD4+ T cells by cross-linked anti-CD3 monoclonal antibodies (mAbs) in the presence of exogenous IL-10. The anergic T cells failed to produce IL-2, IL-5, IL-10, interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-10-induced anergic state was long-lasting. T cell anergy could not be reversed after restimulation of the cells with anti-CD3 and anti-CD28 mAbs, although CD3 and CD28 expression was normal. In addition, restimulation of anergized T cells with anti-CD3 mAbs induced normal Ca2+ fluxes and resulted in increased CD3, CD28, and class II major histocompatibility complex expression, indicating that calcineurin-mediated signaling occurs in these anergic cells. However, the expression of the IL-2 receptor alpha chain was not upregulated, which may account for the failure of exogenous IL-2 to reverse the anergic state. Interestingly, anergic T cells and their nonanergic counterparts showed comparable levels of proliferation and cytokine production after activation with phorbol myristate acetate and Ca2+ ionophore, indicating that a direct activation of a protein kinase C-dependent pathway can overcome the tolerizing effect of IL-10. Taken together, these data demonstrate that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.


2008 ◽  
Vol 134 (4) ◽  
pp. A-508
Author(s):  
Satoshi Egawa ◽  
Hideki Iijima ◽  
Shinichiro Shinzaki ◽  
Sachiko Nakajima ◽  
Jumpei Kondo ◽  
...  

2003 ◽  
Vol 111 (2) ◽  
pp. S106-S107
Author(s):  
P.A. Eigenmann ◽  
L. Tropia ◽  
C. Hauser ◽  
C.P. Frossard

2019 ◽  
Vol 216 (6) ◽  
pp. 1328-1344 ◽  
Author(s):  
Jonatan Tuncel ◽  
Christophe Benoist ◽  
Diane Mathis

Perinatal T cells broadly access nonlymphoid tissues, where they are exposed to sessile tissue antigens. To probe the outcome of such encounters, we examined the defective elimination of self-reactive clones in Aire-deficient mice. Nonlymphoid tissues were sequentially seeded by distinct waves of CD4+ T cells. Early arrivers were mostly Foxp3+ regulatory T (T reg) cells and metabolically active, highly proliferative conventional T cells (T conv cells). T conv cells had unusually high expression of PD-1 and the IL-33 receptor ST2. As T conv cells accumulated in the tissue, they gradually lost expression of ST2, ceased to proliferate, and acquired an anergic phenotype. The transition from effector to anergic state was substantially faster in ST2-deficient perinates, whereas it was abrogated in IL-33–treated mice. A similar dampening of anergy occurred after depletion of perinatal T reg cells. Attenuation of anergy through PD-1 blockade or IL-33 administration promoted the immediate breakdown of tolerance and onset of multiorgan autoimmunity. Hence, regulating IL-33 availability may be critical in maintaining T cell anergy.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1992-2002 ◽  
Author(s):  
Raymund Buhmann ◽  
Annette Nolte ◽  
Doreen Westhaus ◽  
Bertold Emmerich ◽  
Michael Hallek

Although spontaneous remissions may rarely occur in B-cell chronic lymphocytic leukemia (B-CLL), T cells do generally not develop a clinically significant response against B-CLL cells. Because this T-cell anergy against B-CLL cells may be caused by the inability of B-CLL cells to present tumor-antigens efficiently, we examined the possibility of upregulating critical costimulatory (B7-1 and B7-2) and adhesion molecules (ICAM-1 and LFA-3) on B-CLL cells to improve antigen presentation. The stimulation of B-CLL cells via CD40 by culture on CD40L expressing feeder cells induced a strong upregulation of costimulatory and adhesion molecules and turned the B-CLL cells into efficient antigen-presenting cells (APCs). CD40-activated B-CLL (CD40-CLL) cells stimulated the proliferation of both CD4+ and CD8+ T cells. Interestingly, stimulation of allogeneic versus autologous T cells resulted in the expansion of different effector populations. Allogeneic CD40-CLL cells allowed for the expansion of specific CD8+cytolytic T cells (CTL). In marked contrast, autologous CD40-CLL cells did not induce a relevant CTL response, but rather stimulated a CD4+, Th1-like T-cell population that expressed high levels of CD40L and released interferon-γ in response to stimulation by CD40-CLL cells. Together, these results support the view that CD40 activation of B-CLL cells might reverse T-cell anergy against the neoplastic cell clone, although the character of the immune response depends on the major histocompatibility complex (MHC) background on which the CLL or tumor antigens are presented. These findings may have important implications for the design of cellular immunotherapies for B-CLL.


Blood ◽  
2004 ◽  
Vol 103 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Ryan A. Wilcox ◽  
Koji Tamada ◽  
Dallas B. Flies ◽  
Gefeng Zhu ◽  
Andrei I. Chapoval ◽  
...  

Abstract T-cell anergy is a tolerance mechanism defined as a hyporesponsive status of antigen-specific T cells upon prior antigen encounter and is believed to play a critical role in the evasion of tumor immunity and the amelioration of allogeneic transplant rejection. Molecular mechanisms in controlling T-cell anergy are less known. We show here that administration of an agonistic monoclonal antibody (mAb) to CD137, a member of the tumor necrosis factor receptor superfamily, prevents the induction of CD8+ cytolytic T-lymphocyte (CTL) anergy by soluble antigens. More importantly, CD137 mAb restores the functions of established anergic CTLs upon reencountering their cognate antigen. As a result, infusion of CD137 mAb inhibits progressive tumor growth that is caused by soluble tumor antigen-induced tolerance in a P815R model. CD137 mAb also restores proliferation and effector functions of anergic alloreactive 2C T cells in a bone marrow transplantation model. Our results indicate that ligation of CD137 receptor delivers a regulatory signal for T-cell anergy and implicate manipulation of the CD137 pathway as a new approach to break T-cell tolerance.


2000 ◽  
Vol 69 (7) ◽  
pp. 1304-1310 ◽  
Author(s):  
Adriana I. Colovai ◽  
Zhuoru Liu ◽  
Rodica Ciubotariu ◽  
Seth Lederman ◽  
Raffaello Cortesini ◽  
...  
Keyword(s):  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document