BLOCKADE OF CD40/CD154 SPECIFICALLY INHIBITS THE GENERATION OF CD8+CD44hi/CD62L- EFFECTOR MEMORY T CELLS BUT NOT CD4+CD44hi/CD62Lhi CENTRAL MEMORY T CELLS.

2006 ◽  
Vol 82 (Suppl 2) ◽  
pp. 256-257
Author(s):  
&NA;
2006 ◽  
Vol 36 (6) ◽  
pp. 1453-1464 ◽  
Author(s):  
Katharina M. Huster ◽  
Martina Koffler ◽  
Christian Stemberger ◽  
Matthias Schiemann ◽  
Hermann Wagner ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (5) ◽  
pp. 767-771 ◽  
Author(s):  
James J. Campbell ◽  
Rachael A. Clark ◽  
Rei Watanabe ◽  
Thomas S. Kupper

Abstract Cutaneous T-cell lymphoma (CTCL) encompasses leukemic variants (L-CTCL) such as Sézary syndrome (SS) and primarily cutaneous variants such as mycosis fungoides (MF). To clarify the relationship between these clinically disparate presentations, we studied the phenotype of T cells from L-CTCL and MF. Clonal malignant T cells from the blood of L-CTCL patients universally coexpressed the lymph node homing molecules CCR7 and L-selectin as well as the differentiation marker CD27, a phenotype consistent with central memory T cells. CCR4 was also universally expressed at high levels, and there was variable expression of other skin addressins (CCR6, CCR10, and CLA). In contrast, T cells isolated from MF skin lesions lacked CCR7/L-selectin and CD27 but strongly expressed CCR4 and CLA, a phenotype suggestive of skin resident effector memory T cells. Our results suggest that SS is a malignancy of central memory T cells and MF is a malignancy of skin resident effector memory T cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4400-4400
Author(s):  
Catherine S. Diefenbach ◽  
Bruce G. Raphael ◽  
Kenneth B. Hymes ◽  
Tibor Moskovits ◽  
David Kaminetzky ◽  
...  

Abstract Background: In Hodgkin lymphoma (HL) the malignant Hodgkin Reed-Sternberg (HRS) cells comprise only a small fraction of the total cellular tumor population. These HRS cells orchestrate an inflammatory microenvironment of reactive cells that propagate a permissive milieu for HL growth, contributing to an ineffective local anti-tumor immune response. The peritumoral CD4 and CD8 T cells in HL patients show high expression of the receptor programmed death-1 (PD-1), involved in the functional impairment and “exhaustion” of T cells. Growing data suggests that this HL-mediated immune suppression may have effects that extend beyond the tumor microenvironment. High systemic levels of inflammatory cytokines and chemokines in HL patients has been reported. We characterized the systemic immune profile of HL patients with both newly diagnosed (ND) and relapsed (R) disease. Methods: Informed consent for correlative blood testing was obtained from patients with ND (n=8) or R (n=5) HL treated at the NYU Perlmutter Cancer Center or NY Presbyterian/Weil Cornell since January of 2013. Blood samples were drawn pre-treatment, and at sequential timepoints during and after therapy. Peripheral blood mononuclear cells (PBMC) were isolated using Ficoll separation method and cells were frozen for subsequent analysis. The frozen PBMC were then stained with fluorescent-conjugated antibodies against T cell surface molecules in 10-color FACS analysis. The analyses were performed after gating live cells for CD4, CD8 and memory and effector T cell markers. Patient samples were compared to normal controls matched for age and sex (n=18). Results: The median HL patient age was 32 (22-72), and 8 subjects were male. All ND HL patients were treated with ABVD (range 4-6 cycles) +/- consolidative radiation; R patients had median of 3 prior therapies. One patient out of 5 had prior autologous stem cell transplant (SCT), and 1 had prior allogeneic SCT, but was not on immunosuppression. Eight patients (6ND, 2R) responded to therapy (8 CR); 5 patients (1ND, 4R) progressed on therapy or had stable disease. HL patients displayed a high frequency of the exhaustion marker PD-1 on CD4 central memory T cells (CD4+CD45RO+CD27+) compared to normal matched controls (NC): mean 41, standard error (SE) 4.8 for HL patients vs. mean 22.2, SE 1.3 for NC (p = 0.0002) (Figure 1A). PD-1 expression was similarly elevated on CD8 central memory T cells (CD8+CD45RO+CD27+) of HL patients: mean 55, SE 3.3 vs. NC: mean 40, SE 3.3 (p = 0.003) (Figure 1B). HL patients also displayed an increased frequency of PD-1 expression on CD27 negative CD4 effector T cells: mean 43, SE 4, vs. NC: mean 28.5, SE 2.4 (p = 0.003) (Figure 2). In 4 of the HL patients who responded to therapy, PD-1 expression on central memory CD4+ cells declined after therapy: mean 30.1 vs. mean increase of +2.67 in 3 patients who progressed on therapy (p< 0.009). A higher number of subjects in prospective analysis is underway, to confirm whether a response to therapy may be correlated with a reversal of the suppressed phenotype of T cells in these patients. Conclusion: HL patients have evidence of chronic activation/exhaustion in their central memory and effector T cells, suggesting that ineffective immune clearance of the HRS cells may be a systemic rather than local phenomenon. In patients with progressive disease for whom this phenotype persists it is worthy of investigation whether this immune dysfunction is a cause or consequence of resistance to therapy. This may be rationale for immune targeted therapy in patients with relapsed or resistant disease. Figure 1. Evidence for increased levels of T cell exhaustion in central memory T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4, CD8) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells were determined in: A) CD4+CD45RO+CD27+ and B) CD8+CD45RO+CD27+ T cells. Figure 1. Evidence for increased levels of T cell exhaustion in central memory T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4, CD8) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells were determined in: A) CD4+CD45RO+CD27+ and B) CD8+CD45RO+CD27+ T cells. Figure 2. Evidence for increased levels of T cell exhaustion in effector memory CD 4+ T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells was determined in CD4+RO+CD27- T cells Figure 2. Evidence for increased levels of T cell exhaustion in effector memory CD 4+ T cells of HL patients. PBMC were stained with specific fluorescent conjugated antibodies against T cell markers (CD3, CD4) together with differentiation markers (CD45RO, CD27) and PD1 and analyzed using FACS (LSR-II). The proportion of PD1+ T cells was determined in CD4+RO+CD27- T cells Figure 3 Figure 3. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 202 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Alan D. Roberts ◽  
Kenneth H. Ely ◽  
David L. Woodland

Although the absolute number of memory CD8+ T cells established in the spleen following antigen encounter remains stable for many years, the relative capacity of these cells to mediate recall responses is not known. Here we used a dual adoptive transfer approach to demonstrate a progressive increase in the quality of memory T cell pools in terms of their ability to proliferate and accumulate at effector sites in response to secondary pathogen challenge. This temporal increase in efficacy occurred in CD62Llo (effector memory) and CD62Lhi (central memory) subpopulations, but was most prominent in the CD62Lhi subpopulation. These data indicate that the contribution of effector memory and central memory T cells to the recall response changes substantially over time.


2018 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
Marcin Włodarczyk ◽  
Elżbieta Ograczyk ◽  
Magdalena Kowalewicz-Kulbat ◽  
Magdalena Druszczyńska ◽  
Wiesława Rudnicka ◽  
...  

Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. The important question is whether cyclophosphamide (CP), as immunosuppressive agent used in cancer therapy and in some autoimmune diseases, may act on the memory T-cell population. We investigated the effect of CP on the percentage of central memory T cells (TCM) and effector memory T cells (TEM) in the mouse model of CP-induced immunosuppression (8-10-week-old male C57BL/6 mice CP treated for 7 days at the daily dose of 50 μg/g body weight [bw], manifested the best immunosuppression status, as compared to lower doses of CP: 10 or 20 μg/g bw). The CP induced a significant decrease in the percentage of CD8+ (TCM), compared to nonimmunosuppressed mice. This effect was not observed in the case of CD4+ TCM population. The percentage of gated TEM with CD4 and CD8 phenotype was significantly decreased in CP-treated mice, as compared to the control ones. Taken together, the above data indicate that CP-induced immunosuppression in mice leads to a reduction in the abundance of central memory cells possessing preferentially CD8+ phenotype as well as to a reduction in the percentage of effector memory cells (splenocytes both CD4+ and CD8+), compared to the cells from nonimmunosuppressed mice. These findings in mice described in this article may contribute to the understanding of the complexity of the immunological responses in humans and extend research on the impact of the CP model of immunosuppression in mice and memory T-cell populations.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 402
Author(s):  
Rafaela Holtappels ◽  
Kirsten Freitag ◽  
Angelique Renzaho ◽  
Sara Becker ◽  
Niels A.W. Lemmermann ◽  
...  

Murine models of cytomegalovirus (CMV) infection have revealed an exceptional kinetics of the immune response. After resolution of productive infection, transient contraction of the viral epitope-specific CD8 T-cell pool was found to be followed by a pool expansion specific for certain viral epitopes during non-productive ‘latent’ infection. This phenomenon, known as ‘memory inflation’ (MI), was found to be based on inflationary KLRG1+CD62L− effector-memory T cells (iTEM) that depend on repetitive restimulation. MI gained substantial interest for employing CMV as vaccine vector by replacing MI-driving CMV epitopes with foreign epitopes for generating high numbers of protective memory cells specific for unrelated pathogens. The concept of an MI-driving CMV vector is questioned by human studies disputing MI in humans. A bias towards MI in experimental models may have resulted from systemic infection. We have here studied local murine CMV infection as a route that is more closely matching routine human vaccine application. Notably, KLRG1−CD62L+ central memory T cells (TCM) and conventional KLRG1−CD62L− effector memory T cells (cTEM) were found to expand, associated with ‘avidity maturation’, whereas the pool size of iTEM steadily declined over time. The establishment of high avidity CD8 T-cell central memory encourages one to pursue the concept of CMV vector-based vaccines.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3243-3243
Author(s):  
Kazuaki Yokoyama ◽  
Tokiko Nagamura-Inoue ◽  
Shin Nakayama ◽  
Ikuo Ishige ◽  
Kazuo Ogami ◽  
...  

Abstract CD26 is a transmembrane glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity as well as costimulatory activity of mitotic signals triggered by the CD3/TCR complex. Based on the expression level of CD26, CD4+ and CD8+ T cells can be divided into 3 (high/intermediate/low or negative) subsets. The significance of CD26 has been studied mainly on CD4+ T cells, and CD26highCD4+ T cells are considered to represent effector memory T cells of a typical Th1 phenotype producing IL2 and IFNg. Furthermore, we reported a significant decrease of this subset in CML patients under imatinib therapy in comparison to those under IFNa therapy and normal volunteers. In contrast, the role of each subset of CD8+ T cells has not yet been clarified. Multi-parameter flow cytometry analysis was performed to characterize CD8+ T cells differentially expressing CD26 in combination with intracellular detection of effector molecules such as perforin (P) and granzyme B (Gr). The capacity to secrete effector cytokines such as IFNg following short-term stimulation was also assessed. As a result, according to the expression level of CD26, we could clearly categorize CD8+ T cells as follows: CD26highCD8+ T cells are defined as central memory T cells which has a phenotype of CD45RO+CD28+CD27+ IFNg+Gr−P+/−, CD26intCD8+ T cells as naïve T cells of CD45ROCD28+ CD27+ IFNg−Gr−P−, and CD26lowCD8+ T cells as effector memory/effector T cells of CD45RO−/+ CD28−CD27−IFNg++Gr++P++, respectively. We next investigated the effects of imatinib on 3 distinct subsets during CD8+ T cell differentiation program. Peripheral blood mononuclear cells were primed with anti-CD3/CD28 MAb and subjected to the grading doses of imatinib for short term culture, followed by flow cytometory. CFSE labeling was used for monitoring cell proliferation. Intriguingly, we found that imatinib dose-dependently inhibits activation, cytokine production and proliferation of CD26highCD8+ central memory T cell subsets in a differentiation stage-specific manner. Finally, we compared the absolute number of peripheral blood CD26highCD8+ T cell subsets between 20 patients with CML in imatinib-induced CCR and 20 normal volunteers, clearly indicating a significant decrease of this subset in CML patients (22.30/ml vs 45.60/ml, p<0.01). The present study offers another evidence for immunomodulatory effects of imatinib or the critical role of Abl (-related) kinase in T cell development, and draws special attention to susceptibility to viral infection of CML patients under long-term imatinib therapy. Figure Figure


2018 ◽  
Vol 92 (8) ◽  
Author(s):  
Ka-Wai Cheung ◽  
Tongjin Wu ◽  
Sai Fan Ho ◽  
Yik Chun Wong ◽  
Li Liu ◽  
...  

ABSTRACT HIV-1 transmission occurs mainly through mucosal tissues. During mucosal transmission, HIV-1 preferentially infects α 4 β 7 + gut-homing CCR7 − CD4 + effector/effector memory T cells (T EM ) and results in massive depletion of these cells and other subsets of T EM in gut-associated lymphoid tissues. However, besides being eliminated by HIV-1, the role of T EM during the early stage of infection remains inconclusive. Here, using in vitro -induced α 4 β 7 + gut-homing T EM (α 4 β 7 + T EM ), we found that α 4 β 7 + T EM differentiated into CCR7 + CD4 + central memory T cells (T CM ). This differentiation was HIV-1 independent but was inhibited by SB431542, a specific transforming growth factor β (TGF-β) receptor I kinase inhibitor. Consistently, T EM -to-T CM differentiation was observed in α 4 β 7 + T EM stimulated with TGF-β1 (TGF-β). The T CM properties of the TGF-β-induced T EM -derived T CM (α 4 β 7 + T CM ) were confirmed by their enhanced CCL19 chemotaxis and the downregulation of surface CCR7 upon T cell activation in vitro . Importantly, the effect of TGF-β on T CM differentiation also held in T EM directly isolated from peripheral blood. To investigate the significance of the TGF-β-dependent T EM -to-T CM differentiation in HIV/AIDS pathogenesis, we observed that both productively and latently infected α 4 β 7 + T CM could differentiate from α 4 β 7 + T EM in the presence of TGF-β during HIV-1 infection. Collectively, this study not only provides a new insight for the plasticity of T EM but also suggests that the TGF-β-dependent T EM -to-T CM differentiation is a previously unrecognized mechanism for the formation of latently infected T CM after HIV-1 infection. IMPORTANCE HIV-1 is the causative agent of HIV/AIDS, which has led to millions of deaths in the past 30 years. Although the implementation of highly active antiretroviral therapy has remarkably reduced the HIV-1-related morbidity and mortality, HIV-1 is not eradicated in treated patients due to the presence of latent reservoirs. Besides, the pathogenesis in CD4 T cells early after infection still remains elusive. Immediately after HIV-1 mucosal infection, CD4 T cells are preferentially infected and depleted. However, in addition to being depleted, the other roles of the CD4 T cells, especially the effector/effector memory T cells (T EM ), in disease progression are not completely understood. The significance of this study is in revealing a novel mechanism for the formation of latently HIV-1-infected central memory CD4 T cells, a major latent reservoir from CD4 T EM after infection. Our findings suggest previously unrecognized roles of CD4 T EM in HIV-1 pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document