Novel anticoagulants based on direct inhibition of thrombin and factor Xa

1998 ◽  
Vol 9 (2) ◽  
pp. 75???82
Author(s):  
Stephen J. Gardell ◽  
Philip E.J. Sanderson
Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 540
Author(s):  
Nadezhda E. Ustyuzhanina ◽  
Maria I. Bilan ◽  
Andrey S. Dmitrenok ◽  
Alexandra S. Silchenko ◽  
Boris B. Grebnev ◽  
...  

Fucosylated chondroitin sulfates (FCSs) PC and HH were isolated from the sea cucumbers Paracaudina chilensis and Holothuria hilla, respectively. The purification of the polysaccharides was carried out by anion-exchange chromatography on a DEAE-Sephacel column. The structural characterization of the polysaccharides was performed in terms of monosaccharide and sulfate content, as well as using a series of nondestructive NMR spectroscopic methods. Both polysaccharides were shown to contain a chondroitin core [→3)-β-d-GalNAc (N-acethyl galactosamine)-(1→4)-β-d-GlcA (glucuronic acid)-(1→]n, bearing sulfated fucosyl branches at O-3 of every GlcA residue in the chain. These fucosyl residues were different in their pattern of sulfation: PC contained Fuc2S4S and Fuc4S in a ratio of 2:1, whereas HH included Fuc2S4S, Fuc3S4S, and Fuc4S in a ratio of 1.5:1:1. Moreover, some GalNAc residues in HH were found to contain an unusual disaccharide branch Fuc4S-(1→2)-Fuc3S4S-(1→ at O-6. Sulfated GalNAc4S6S and GalNAc4S units were found in a ratio of 3:2 in PC and 2:1 in HH. Both polysaccharides demonstrated significant anticoagulant activity in a clotting time assay, which is connected with the ability of these FCSs to potentiate the inhibition of thrombin and factor Xa in the presence of anti-thrombin III (ATIII) and with the direct inhibition of thrombin in the absence of any cofactors.


1980 ◽  
Vol 44 (02) ◽  
pp. 092-095 ◽  
Author(s):  
T H Tran ◽  
C Bondeli ◽  
G A Marbet ◽  
F Duckert

SummaryTwo different AT-III fractions were purified from the plasma of a patient with recurrent superficial thrombophlebitis. The abnormal AT-III fraction (A-AT) was compared to the normal AT-III fraction (N-AT) in the inhibition of thrombin and factor Xa. Without heparin, both inactivate proteases in a similar manner and at the same rate. However, at low heparin concentration the thrombin inhibition proceeds more slowly with A-AT than with N-AT. At high heparin concentration the difference between A-AT and N-AT becomes very small. The inhibition of factor Xa follows a similar pattern. It is suggested that the heparin binding site of A-AT differs from that of N-AT resulting in a decreased heparin cofactor activity.


1981 ◽  
Vol 46 (04) ◽  
pp. 749-751 ◽  
Author(s):  
E Cofrancesco ◽  
A Vigo ◽  
E M Pogliani

SummaryThe ability of heparin and related glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, factor Xa and plasmin in plasma and in a purified system containing antithrombin III (At III) was studied using chromogenic peptide substrate assaysThere was a good correlation between the charge density of the mucopolysaccharides and the activities investigated. While the difference between potentiation of the antithrombin activity by GAGs in plasma and in the purified system was slight, the inhibition of factor Xa in plasma was more pronounced than in the presence of purified At III, indicating the mechanisms for GAGs-potentiated inhibition of thrombin and factor Xa are not identical.For the antiplasmin activity, there was a good correlation between the chemical structure and biological activity only in the pure system, confirming that the antithrombin-GAG complex plays a very limited role in the inactivation of plasmin in plasma.


1997 ◽  
Vol 78 (04) ◽  
pp. 1215-1220 ◽  
Author(s):  
D Prasa ◽  
L Svendsen ◽  
J Stürzebecher

SummaryA series of inhibitors of factor Xa (FXa) were investigated using the thrombin generation assay to evaluate the potency and specificity needed to efficiently block thrombin generation in activated human plasma. By inhibiting FXa the generation of thrombin in plasma is delayed and decreased. Inhibitor concentrations which cause 50 percent inhibition of thrombin generation (IC50) correlate in principle with the Ki values for inhibition of free FXa. Recombinant tick anticoagulant peptide (r-TAP) is able to inhibit thrombin generation with considerably low IC50 values of 49 nM and 37 nM for extrinsic and intrinsic activation, respectively. However, the potent synthetic, low molecular weight inhibitors of FXa (Ki values of about 20 nM) are less effective in inhibiting the generation of thrombin with IC50 values at micromolar concentrations.The overall effect of inhibitors of FXa in the thrombin generation assay was compared to that of thrombin inhibitors. On the basis of similar Ki values for the inhibition of the respective enzyme, synthetic FXa inhibitors are less effective than thrombin inhibitors. In contrast, the highly potent FXa inhibitor r-TAP causes a stronger reduction of the thrombin activity in plasma than the most potent thrombin inhibitor hirudin.


Blood ◽  
1984 ◽  
Vol 63 (4) ◽  
pp. 927-934
Author(s):  
MJ Rabiet ◽  
M Jandrot-Perrus ◽  
JP Boissel ◽  
J Elion ◽  
F Josso

Thrombin Metz and normal thrombin, resulting from activation of the respective prothrombins by factor Xa in the presence of calcium, phospholipid, and factor Va, were purified by chromatography on sulfopropyl Sephadex. By physicochemical criteria, thrombin Metz is identical to normal thrombin. Its functional properties were investigated in some reactions in which thrombin is classically involved. Thrombin Metz exhibits less than 4% of fibrinogen clotting activity. Both Km and Kcat, determined on S2238, are abnormal. Titration with the high-affinity competitive inhibitor of thrombin, DAPA, shows that fluorescence enhancement of the probe is only 34% in binding to thrombin Metz when compared to that observed in binding to normal thrombin. High-performance liquid chromatography has been used to measure the simultaneous rate of release of fibrinopeptides A and B. A decreased release rate for both fibrinopeptides, more marked for fibrinopeptide B, results in a slow fibrin polymerization, as followed by absorbance at 450 nm. Thrombin Metz is less than 5% as effective as normal thrombin in inducing platelet aggregation. Interaction with antithrombin III is slower than normal when followed by SDS gel electrophoresis and inhibition of the amidolytic activity of thrombin on S2238. This abnormality is not observed in the presence of heparin. However, thrombin Metz binds less tightly to a heparin-Sepharose column, and the direct inhibition of heparin on its activity on S2238 is weaker. From these results, we can predict that the defect in thrombin Metz affects the catalytic site or its vicinity and, jointly or consequently, the region of interaction of thrombin with antithrombin III and heparin.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1478-1478
Author(s):  
Jeremy P Wood ◽  
Lisa M Baumann Kreuziger ◽  
Rodney M. Camire ◽  
Umesh R Desai ◽  
Alan E. Mast

Abstract Introduction: Prothrombinase, the complex of factor Xa (FXa) and factor Va (FVa), is inhibited by tissue factor pathway inhibitor (TFPI)α during the initiation of coagulation (Wood JP et al, PNAS 2013). Efficient inhibition of thrombin generation by prothrombinase requires an interaction between the TFPIα basic C-terminus and an acidic region of the FVa B-domain. This acidic region is present in FXa-activated FVa and FVa released from activated platelets, but is rapidly removed by thrombin. Thus, prothrombinase inhibition only occurs during the initiation phase of thrombin generation. As the exosite interaction is charge-dependent, large negatively charged molecules, including unfractionated heparin (UFH), block it, prevent prothrombinase inhibition, and promote thrombin generation. Studies using the negatively charged molecule polyphosphate have suggested a size requirement for blocking this TFPIα activity (Smith SA et al, Blood2010). A similar size-dependence may exist with heparins and could have clinical implications, as currently-used heparins range from long (unfractionated heparin; UFH) to medium (low molecular weight heparins; LMWHs) to short (the antithrombin-binding pentasaccharide fondaparinux). Studies were performed to assess the ability of the LMWHs enoxaparin and dalteparin, fondaparinux, and the nonanticoagulant heparin 2-O, 3-O desulfated heparin (ODSH) to block TFPIα and promote thrombin generation through this mechanism. Methods: TFPIα inhibition of thrombin generation by prothrombinase, assembled with a form of FVa containing the acidic region of the B domain, was measured in the absence or presence of UFH, enoxaparin, dalteparin, fondaparinux, and ODSH. The effect of these compounds on the direct inhibition of FXa by TFPIα was measured using a FXa chromogenic substrate. The effect of these compounds on thrombin generation in plasma was measured by calibrated automated thrombography using human plasma immunodepleted of antithrombin III and heparin cofactor II (AT3/HCII-depleted plasma). Results: TFPIα inhibited prothrombinase activity (IC50 = 6.8 nM), and UFH blocked this inhibition (IC50 = 12.5 nM or 14.9 nM at 0.5 or 1 U/mL, respectively). Enoxaparin (0.8 U/mL; IC50 = 30.3 nM) and dalteparin (1 U/mL; IC50 = 29.7 nM) appeared to be more effective at reversing TFPIα inhibition. The reason for this apparent enhanced effect of LMWHs compared to UFH is not clear, as UFH and the LMWHs similarly enhanced the direct inhibition of FXa by TFPIα, and the differential activity was also observed when heparins were normalized to saccharide concentration. The same pattern was observed when measuring thrombin generation in AT3/HCII-depleted plasma, with LMWHs being more procoagulant than UFH. Consistent with TFPIα inhibition being charge-dependent, ODSH promoted thrombin generation similarly to LMWHs in both purified systems and AT3/HCII-depleted plasma. In contrast, clinical doses of fondaparinux had no effect in any assay. In a purified system, ~1000 times the clinical dose of fondaparinux was required to promote thrombin generation. Conclusion: There is a size-dependence for blocking TFPIα inhibition of prothrombinase using heparins, as the pentasaccharide has no effect. However, both LMWHs and UFH are sufficiently long to express this procoagulant activity at therapeutic doses. In addition, the nonanticoagulant heparin ODSH blocks prothrombinase inhibition by TFPIα. This procoagulant activity is likely most clinically relevant under conditions of antithrombin deficiency, which may result from sepsis, liver failure, or administration of L-asparaginase. Under any of these conditions, UFH, LMWHs, and ODSH may have unanticipated procoagulant activity mediated by blocking TFPIα. Disclosures Camire: Pfizer: Consultancy, Patents & Royalties, Research Funding. Mast:Novo Nordisk: Research Funding.


2008 ◽  
Vol 100 (05) ◽  
pp. 837-846 ◽  
Author(s):  
Rehana S. Lovely ◽  
Chantelle M. Rein ◽  
Tara C. White ◽  
Sari A. Jouihan ◽  
Lynn K. Boshkov ◽  
...  

SummaryThe minor γA/γ’ fibrinogen isoform contains a high affinity binding site for thrombin exosite II that is lacking in the major γA/γA fibrinogen isoform. We therefore investigated the biological consequences of the γ’ chain binding to thrombin. Thrombin-induced platelet aggregation was inhibited by γA/γ’ fibrinogen.Carboxyl terminal peptide fragment γ’410–427 from the γ’ chain was also inhibitory, with an IC50 of ∼200 µM in whole plasma. Deletion of the peptide from either the amino or carboxyl end significantly decreased inhibition. In contrast to thrombin-induced platelet aggregation, aggregation induced by epinephrine, ADP, arachidonic acid, or SFLLRN peptide showed little inhibition by the γ’ peptide. The inhibition of thrombin-induced platelet aggregation was not due to direct inhibition of the thrombin active site, since cleavage of a small peptidyl substrate was 91% of normal even in the presence of 1 mM γ’410–427.The γ’410–427 peptide blocked platelet adhesion to immobilized thrombin under both static and flow conditions,blocked soluble thrombin binding to platelet GPIbα, and inhibited PAR1 cleavage by thrombin. These results suggest that the γ’ chain of fibrinogen inhibits thrombin-induced platelet aggregation by binding to thrombin exosite II. Thrombin that is bound to the γ’ chain is thereby prevented from activating platelets, while retaining its amidolytic activity.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1158-1158
Author(s):  
Fakiha Siddiqui ◽  
Alfonso J Tafur ◽  
Debra Hoppensteadt ◽  
Jeanine Walenga ◽  
Walter Jeske ◽  
...  

Introduction: Andexanet Alpha (Coagulation factor Xa recombinant, inactivated Zh-zo; AA, Portola Pharmaceuticals) is a recombinant factor Xa decoy protein which is designed to reverse the effects of apixaban and rivaroxaban and is approved for the control of bleeding complications associated with their use. The molecular modification in this recombinant protein involves the substitution of serine active site by alanine and the removal of the gamma-carboxyglutamic acid (GLA) domain to restrict its assemblage into prothrombinase complex. Beside the reversal of the effects of anti-Xa agents AA is also reported to neutralize the biologic effects of heparin and related drugs. Assay dependent variations in the neutralization profile of various factor Xa inhibitors by andexanet has been recently reported https://doi.org/10.1177/1076029619847524. Since heparin and related drugs also mediate their biologic actions by inhibiting factor Xa via AT complexation, it is hypothesized that AA may also inhibit their biologic effects as measured in various laboratory assays. It is the purpose of this study is to compare the relative neutralization profile of heparin (UFH), a low molecular weight heparin, enoxaparin (E) and a chemically synthetic pentasaccharide, Fondaparinux (F) by AA. Materials and Methods: API versions of UFH, E and F were commercially obtained in powdered forms and dissolved in saline at a working dilution of 1mg/ml. AA was dissolved in saline to obtain a 10mg/ml working solution. The anticoagulant profile of UFH, E and F was studied using the activated partial thromboplastin time (APTT) and thrombin time (TT) in a concentration range of 0 - 10 ug/ml in pooled human plasma. The anti-Xa and anti-IIa studies were carried out in amidolytic assays in the same concentration range. The thrombin generation inhibition was studied using calibrated automated thrombin generation systems (CAT, Diagnostica Stago). The effect of AA on the reversal of the anticoagulant and anti-protease and thrombin generation effects of each of these agents were studied by supplementing this agent at 100 ug/ml. The results are compared to determine the difference between pre and post AA neutralization settings. Results: All agents produce a concentration dependent effect in the anticoagulant and anti-protease assays with the exception of F which showed mild anticoagulant effects, and very weak anti-IIa actions and strong anti-Xa activity. In the anti-Xa assay the IC-50 for UFH was 2.1ug/ml (0.13 um), E 4.3 ug/ml (0.95 um) and F 0.7 ug/ml (0.41 um) upon supplementation of AA the IC50s for UFH was increased to 5 ug/ml (0.31 um) and for E 5 ug/ml (1.11 um). However, there was no neutralization of the anti-Xa effects of the F by AA and the IC50 remained the same for both pre and post andexxa studies. The anticoagulant effects of UFH as measured by aPTT and TT was strongly neutralized whereas E was only partially neutralized in the aPTT assay and almost completely neutralized in the thrombin time assay. At concentrations of up to 10 ug/ml F did not produced any significant anticoagulant effects, both in the presence and absence of AA. In the thrombin generation inhibition assays, UFH produced a complete inhibition of thrombin generation which was completely reversed by AA. Although both E and F produced strong inhibition of thrombin generation, AA did not completely neutralize these effects. The results are tabulated on table 1 for the studies carried out at 10 ug/ml of UFH, E and F. Conclusion: These results indicate that AA is capable of differentially neutralizing anticoagulant and anti-protease effects of UFH in an assay dependent manner. However, AA is incapable of neutralizing the anti-Xa effects of E and F. This may be due to the relatively differential affinities of enoxaparin and fondaparinux AT complex to factor Xa rendering it inhibited in the presence of AA. These studies also demonstrate that the primary surrogate marker anti-Xa activity for measuring the activities of anti-Xa agents is not proportional to the anticoagulant and thrombin generation inhibitory effects of these agents. A global clotting assay may be a better indication of the biologic effects of these agents and their reversal by AA. Disclosures Tafur: Recovery Force: Consultancy; Janssen: Other: Educational Grants, Research Funding; BMS: Research Funding; Idorsia: Research Funding; Daichi Sanyo: Research Funding; Stago: Research Funding; Doasense: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document