B74 THE EFFECTS OF ACUTE TRYPTOPHAN DEPLETION ON BDNF PROTEIN LEVELS IN BRAIN AND SERUM OF MALE AND FEMALE RATS

2005 ◽  
Vol 16 (Supplement 1) ◽  
pp. S89
Author(s):  
E.L. Van Donkelaar ◽  
L.A.W. Jans ◽  
A. Blokland ◽  
N.E.P. Deutz ◽  
G. Kenis ◽  
...  
1982 ◽  
Vol 60 (10) ◽  
pp. 1247-1250 ◽  
Author(s):  
Janet L. Lister ◽  
Bruce B. Virgo

The basal activities of aniline hydroxylase (AH), hexobarbital hydroxylase (HH), and ethylmorphine N-demethylase (ED) were measured in the 9000 × g supernatant of kidneys and lungs from male and female rats. No ED activity was detected in any tissue although all tissues N-demethylated three other substrates. The activities of AH and HH were not sex dependent in either kidney or lung. Similarly, pulmonary and renal microsomal protein concentrations were independent of sex. In addition, cytochrome P-450 levels in the kidney were the same in males and females (pulmonary P-450 was not measured). The pulmonary hydroxylases were more active than the renal enzymes in both sexes. In males, phenobarbital (ip, 50 rng∙kg−1∙day−1 for 3 days) failed to induce AH or HH in either kidney or lung; it did not increase the weight or microsomal protein levels of these organs and it also failed to increase renal P-450. Thus, the basal activities of AH and HH in lungs and kidneys are not different in male and female rats and are not increased by phenobarbital.


2010 ◽  
Vol 88 (7) ◽  
pp. 753-759 ◽  
Author(s):  
Asdghig H. Der-Boghossian ◽  
Sara R. Saad ◽  
Claudine Perreault ◽  
Chantale Provost ◽  
Danielle Jacques ◽  
...  

The aim of this study was to determine whether the jejunal oligopeptide transporter PepT1 is regulated by insulin and whether this regulation is sex-dependent in type 1 diabetic rats. PepT1 expression, real-time polymerase chain reaction, and Western blots were performed using jejunal segments from 4 groups of male and female rats: normal (nondiabetic), insulin-treated nondiabetic, streptozotocin (STZ)-induced diabetic (type 1 diabetes), and insulin-treated diabetic models. Furthermore, the same segments from all groups underwent perfusion to assess uptake of the dipeptide glycylsarcosine through PepT1. Our results showed that insulin treatment of nondiabetic female rats decreased blood glucose level but did not affect nondiabetic male rats. In both male and female diabetic rats, insulin did not completely decrease blood glucose level. Insulin treatment decreased PepT1 mRNA level in nondiabetic male rats and increased mRNA level in nondiabetic female rats without affecting the PepT1 protein level in either sex. Inducing diabetes with STZ increased PepT1 mRNA and protein levels in female rats; however, in diabetic male rats, the increase in mRNA level was accompanied by a decrease in PepT1 protein level. Treatment of diabetic male rats with insulin partially reversed the effect of diabetes on PepT1 mRNA and protein levels, whereas the same treatment completely restored both PepT1 mRNA and protein to control levels in insulin-treated diabetic female rats. In both nondiabetic male and female rats, insulin treatment had no effect on PepT1 influx rate, and STZ treatment decreased the transporter influx rate. Treatment of diabetic male and female rats with insulin significantly increased PepT1 influx rate; however, complete recovery was found only in diabetic female rats. These results clearly show that insulin and diabetes affected blood glucose level as well as PepT1 activity, expression, and protein levels in a sex-dependent manner. These results suggest that a factor, probably estrogen, could be responsible for the sex-dependent effects of diabetes and insulin in PepT1 level and activity.


Life Sciences ◽  
2020 ◽  
Vol 247 ◽  
pp. 117446 ◽  
Author(s):  
Mohammad Reza Aslani ◽  
Hassan Ghobadi ◽  
Hamdollah Panahpour ◽  
Mahdi Ahmadi ◽  
Majid Khaksar ◽  
...  

Endocrinology ◽  
1952 ◽  
Vol 51 (2) ◽  
pp. 100-109 ◽  
Author(s):  
J. RlVERO-FONTAN ◽  
K. E. PASCHKIS ◽  
E. WEST ◽  
A. CANTAROW

1961 ◽  
Vol 38 (1) ◽  
pp. 50-58 ◽  
Author(s):  
N. E. Borglin ◽  
L. Bjersing

ABSTRACT Oestriol (oestra-1,3,5(10)-triene-3,16α,17β-triol) is a weakly oestrogenic substance which, however, in contrast to what was formerly believed, is of physiological significance. Its effect is localized largely to the uterine cervix and vagina. Clinical experience argues both for and against an effect on the pituitary gland. This investigation is concerned with the morphological changes in the pituitary gland and adrenal cortex of gonadectomized male and female rats after the injection of oestriol. It was found that oestriol has the same type of action on these glands as other oestrogens, but under the experimental conditions used, this effect proved much weaker than that produced by oestradiol (oestra-1,3,5(10)-triene-3,17β-diol).


1973 ◽  
Vol 74 (1) ◽  
pp. 88-104 ◽  
Author(s):  
T. Jolín ◽  
M. J. Tarin ◽  
M. D. Garcia

ABSTRACT Male and female rats of varying ages were placad on a low iodine diet (LID) plus KClO4 or 6-propyl-2-thiouracil (PTU) or on the same diet supplemented with I (control rats). Goitrogenesis was also induced with LID plus PTU in gonadectomized animals of both sexes. The weight of the control and goitrogen treated animals, and the weight and iodine content of their thyroids were determined, as well as the plasma PBI, TSH, insulin and glucose levels. The pituitary GH-like protein content was assessed by disc electrophoresis on polyacrylamide gels. If goitrogenesis was induced in young rats of both sexes starting with rats of the same age, body weight (B.W.) and pituitary growth hormone (GH) content, it was found that both the males and females developed goitres of the same size. On the contrary, when goitrogenesis was induced in adult animals, it was found that male rats, that had larger B.W. and pituitary GH content than age-paired females, developed larger goitres. However, both male and female rats were in a hypothyroid condition of comparable degree as judged by the thyroidal iodine content and the plasma PBI and TSH levels. When all the data on the PTU or KClO4-treated male and female rats of varying age and B.W. were considered together, it was observed that the weights of the thyroids increased proportionally to B.W. However, a difference in the slope of the regression of the thyroid weight over B.W. was found between male and female rats, due to the fact that adult male rats develop larger goitres than female animals. In addition, in the male rats treated with PTU, gonadectomy decreased the B.W., pituitary content of GH-like protein and, concomitantly, the size of the goitre decreased; an opposite effect was induced by ovariectomy on the female animals. However, when goitrogenesis was induced in weight-paired adult rats of both sexes, the male animals still developed larger goitres than the females. Among all the parameters studied here, the only ones which appeared to bear a consistent relationship with the size of the goitres in rats of different sexes, treated with a given goitrogen, were the rate of body growth and the amount of a pituitary GH-like protein found before the onset of the goitrogen treatment. Moreover, though the pituitary content of the GH-like protein decreased as a consequence of goitrogen treatment, it was still somewhat higher in male that in female animals. The present results suggest that GH may somehow be involved in the mechanism by which male and female rats on goitrogens develop goitres of different sizes, despite equally high plasma TSH levels.


1968 ◽  
Vol 58 (4) ◽  
pp. 600-612 ◽  
Author(s):  
Robert Boyd ◽  
Donald C. Johnson

ABSTRACT The effects of various doses of testosterone propionate (TP) upon the release of luteinizing hormone (LH or ICSH) from the hypophysis of a gonadectomized male or female rat were compared. Prostate weight in hypophysectomized male parabiotic partners was used to evaluate the quantity of circulating LH. Hypophyseal LH was measured by the ovarian ascorbic acid depletion method. Males castrated when 45 days old secreted significantly more LH and had three times the amount of pituitary LH as ovariectomized females. Administration of 25 μg TP daily reduced the amount of LH in the plasma, and increased the amount in the pituitary gland, in both sexes. Treatment with 50 μg caused a further reduction in plasma LH in males, but not in females, while pituitary levels in both were equal to that of their respective controls. LH fell to the same low level in partners of males or females receiving 100 μg TP. When gonadectomized at 39 days, males and females had the same amount of plasma LH, but males had more stored hormone. Pituitary levels were unchanged from controls following treatment with 12.5, 25 or 50 μg TP daily, but plasma values dropped an equal amount in both sexes with the latter two doses. Androgenized males or females, gonadectomized when 39 days old, were very sensitive to the effects of TP and plasma LH was significantly reduced with 12.5 μg daily. Pituitary LH in androgenized males was higher than that of normal males but was reduced to normal by small amounts of TP. The amount of stored LH in androgenized females was not different from that of normal females and it was unchanged by any dose of TP tested. Results are consistent with the conclusion that the male hypothalamic-hypophyseal axis is at least as sensitive as the female axis to the negative feedback effects of TP. Androgenization increases the sensitivity to TP in both males and females.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S191-S192
Author(s):  
M. STOPPOK ◽  
H. SCHRIEFERS ◽  
E. R. LAX

Sign in / Sign up

Export Citation Format

Share Document