Optimizing the Soil Physical Environment Toward Greater Crop Yields. Daniel Hillel, ed

Soil Science ◽  
1973 ◽  
Vol 116 (1) ◽  
pp. 64
Author(s):  
JOHN W. CARY
2020 ◽  
Author(s):  
Jennifer Burney ◽  
Geeta Persad ◽  
Jonathan Proctor ◽  
Marshall Burke ◽  
Eran Bendavid ◽  
...  

<p>Here we demonstrate how the same aerosol emissions, released from different locations, lead to different regional and global changes in the physical environment, in turn resulting in divergent magnitudes and spatial distributions of societal impacts. Atmospheric chemistry and the general circulation do not evenly distribute aerosols around the globe, so aerosol impacts -- both direct and via interactions with the general circulation -- vary spatially. Our repeat-cycle perturbation experiment shows that the same emissions, when released from one of 8 different regions, result in significantly different steady-state distributions of surface particulate matter (PM<sub>2.5</sub>), total column aerosol optical depth (AOD), surface temperature, and precipitation. We link these changes in the physical environment to established temperature, precipitation, AOD, and PM<sub>2.5</sub> damage functions to estimate both local and global impacts on infant mortality, crop yields, and economic growth. Because the damages associated with these aerosol and aerosol precursor emissions are strongly emission-location dependent, the marginal dollar spent on mitigation would have very different returns in different locations, both locally and globally. This has important implications for calculating a realistic social cost of carbon, since these aerosol-mediated effects are ultimately inseparable from the processes producing CO<sub>2</sub> emissions.</p>


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 825
Author(s):  
Igor Dekemati ◽  
Barbara Simon ◽  
Igor Bogunovic ◽  
Szergej Vinogradov ◽  
Maimela Maxwell Modiba ◽  
...  

The aim of this study was to determine the environmental suitability of conservation tillage systems. A 3-year experiment was conducted in Croatia, to study the effects of different tillage treatments on soil properties, with the following: deep (DC), shallow tine cultivation (SC) and ploughing (P). Soil penetration resistance (SPR) was significantly greater in P compared to DC in all three years. In 2016, it was found at 30–40 and 40–50 cm; in 2017 at 10–20 cm; in 2018 at 0–10 and 10–20 cm. However, SC was significantly greater at 20–30, 30–40 and 40–50 cm compared to P and DC in 2017. The greater surface coverage in DC and SC (>30%) as compared to P (<1%) provided significantly higher soil moisture content (SMC) in maize (2016) and soybean (2018). In 2017, SMC in SC was significantly lower than in P and DC. Regarding all the 3 years, the agronomic structure in DC and SC had significantly greater crumb ratio compared to P, whereas P had significantly higher dust ratio than DC and SC. Throughout the 15 measurements, DC provided the most favorable soil habitat (11 occasions out of 15). In 2017, the earthworm abundance was significantly higher in DC compared to SC. In all the three years, DC resulted the highest yield, however the difference was not significant. Higher surface coverage and SMC positively impacted the ratio of agronomic structure (decreased dust and increased crumb ratio) and earthworm abundance. It can be concluded that DC and SC provided greater soil coverage which positively affected SPR, SMC, agronomic structure and earthworm abundance as compared to P.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sunday E. Obalum ◽  
Mohammed M. Buri ◽  
John C. Nwite ◽  
Hermansah ◽  
Yoshinori Watanabe ◽  
...  

The paper provides an insight into the problem of land degradation in Sub-Saharan Africa, with emphasis on soil erosion and its effect on soil quality and productivity, and proposes a lowland-based rice-production technology for coping with the situation. Crop yields are, in addition to the degree of past and current erosion, determined by a number of interacting variables. This, coupled with the generally weak database on erosion-induced losses in crop yield in spite of the region’s high vulnerability to erosion, makes it difficult to attain a reliable inference on the cause-effect relationship between soil loss and productivity. Available data suggest, however, that the region is at risk of not meeting up with the challenges of agriculture in this 21st century. Based on the few studies reviewed, methodology appears to have an overwhelming influence on the erosion-productivity response, whereas issues bordering on physical environment and soil affect the shape of the response curve. We argue that thesawahecotechnology has the potential of countering the negative agronomic and environmental impacts of land degradation in Sub-Saharan Africa. This is a farmer-oriented, low-cost system of managing soil, water, and nutrient resources for enhancing lowland rice productivity and realizing Green Revolution in the region.


2016 ◽  
Vol 6 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Isaac Munene

Abstract. The Human Factors Analysis and Classification System (HFACS) methodology was applied to accident reports from three African countries: Kenya, Nigeria, and South Africa. In all, 55 of 72 finalized reports for accidents occurring between 2000 and 2014 were analyzed. In most of the accidents, one or more human factors contributed to the accident. Skill-based errors (56.4%), the physical environment (36.4%), and violations (20%) were the most common causal factors in the accidents. Decision errors comprised 18.2%, while perceptual errors and crew resource management accounted for 10.9%. The results were consistent with previous industry observations: Over 70% of aviation accidents have human factor causes. Adverse weather was seen to be a common secondary casual factor. Changes in flight training and risk management methods may alleviate the high number of accidents in Africa.


Sign in / Sign up

Export Citation Format

Share Document