Aerosol - Climate Interactions, the Distribution of Aerosol Impacts, and Implications for the Social Cost of Carbon

Author(s):  
Jennifer Burney ◽  
Geeta Persad ◽  
Jonathan Proctor ◽  
Marshall Burke ◽  
Eran Bendavid ◽  
...  

<p>Here we demonstrate how the same aerosol emissions, released from different locations, lead to different regional and global changes in the physical environment, in turn resulting in divergent magnitudes and spatial distributions of societal impacts. Atmospheric chemistry and the general circulation do not evenly distribute aerosols around the globe, so aerosol impacts -- both direct and via interactions with the general circulation -- vary spatially. Our repeat-cycle perturbation experiment shows that the same emissions, when released from one of 8 different regions, result in significantly different steady-state distributions of surface particulate matter (PM<sub>2.5</sub>), total column aerosol optical depth (AOD), surface temperature, and precipitation. We link these changes in the physical environment to established temperature, precipitation, AOD, and PM<sub>2.5</sub> damage functions to estimate both local and global impacts on infant mortality, crop yields, and economic growth. Because the damages associated with these aerosol and aerosol precursor emissions are strongly emission-location dependent, the marginal dollar spent on mitigation would have very different returns in different locations, both locally and globally. This has important implications for calculating a realistic social cost of carbon, since these aerosol-mediated effects are ultimately inseparable from the processes producing CO<sub>2</sub> emissions.</p>

2016 ◽  
Vol 16 (21) ◽  
pp. 13885-13910 ◽  
Author(s):  
Nicolas Bellouin ◽  
Laura Baker ◽  
Øivind Hodnebrog ◽  
Dirk Olivié ◽  
Ribu Cherian ◽  
...  

Abstract. Predictions of temperature and precipitation responses to changes in the anthropogenic emissions of climate forcers require the quantification of the radiative forcing exerted by those changes. This task is particularly difficult for near-term climate forcers like aerosols, methane, and ozone precursors because their short atmospheric lifetimes cause regionally and temporally inhomogeneous radiative forcings. This study quantifies specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, for eight near-term climate forcers as a function of their source regions and the season of emission by using dedicated simulations by four general circulation and chemistry-transport models. Although differences in the representation of atmospheric chemistry and radiative processes in different models impede the creation of a uniform dataset, four distinct findings can be highlighted. Firstly, specific radiative forcing for sulfur dioxide and organic carbon are stronger when aerosol–cloud interactions are taken into account. Secondly, there is a lack of agreement on the sign of the specific radiative forcing of volatile organic compound perturbations, suggesting they are better avoided in climate mitigation strategies. Thirdly, the strong seasonalities of the specific radiative forcing of most forcers allow strategies to minimise positive radiative forcing based on the timing of emissions. Finally, European and shipping emissions exert stronger aerosol specific radiative forcings compared to East Asia where the baseline is more polluted. This study can therefore form the basis for further refining climate mitigation options based on regional and seasonal controls on emissions. For example, reducing summertime emissions of black carbon and wintertime emissions of sulfur dioxide in the more polluted regions is a possible way to improve air quality without weakening the negative radiative forcing of aerosols.


Author(s):  
Christoph Hambel ◽  
Holger Kraft ◽  
Eduardo Schwartz

2016 ◽  
Author(s):  
Douglas G. MacMartin ◽  
Ben Kravitz

Abstract. Climate emulators trained on existing simulations can be used to project the climate effects that would result from different possible future pathways of anthropogenic forcing, without relying on general circulation model (GCM) simulations for every possible pathway. We extend this idea to include different amounts of solar geoengineering in addition to different pathways of green-house gas concentrations by training emulators from a multi-model ensemble of simulations from the Geoengineering Model Intercomparison Project (GeoMIP). The emulator is trained on the abrupt 4 x CO2 and a compensating solar reduction simulation (G1), and evaluated by comparing predictions against a simulated 1 % per year CO2 increase and a similarly smaller solar reduction (G2). We find reasonable agreement in most models for predicting changes in temperature and precipitation (including regional effects), and annual-mean Northern hemisphere sea ice extent, with the difference between simulation and prediction typically smaller than natural variability. This verifies that the linearity assumption used in constructing the emulator is sufficient for these variables over the range of forcing considered. Annual-minimum Northern hemisphere sea ice extent is less-well predicted, indicating the limits of the linearity assumption. For future pathways involving relatively small forcing from solar geoengineering, the errors introduced from nonlinear effects may be smaller than the uncertainty due to natural variability, and the emulator prediction may be a more accurate estimate of the forced component of the models' response than an actual simulation would be.


2017 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Seied Mohsen Taghavi ◽  
Teodoro C. Mendoza ◽  
Bart Acero Jr ◽  
Tao Li ◽  
Sameer Ali Siddiq ◽  
...  

Breeding of rice varieties with low carbon dioxide equivalent (CO2e) emission is essential in reducing global greenhouse gas (GHG) emissions. In this study, we compared the gross CO2e emission of two newly developed green super rice (GSR) varieties with elite hybrids and nationally released farmer-cultivated varieties from production to post-production in the dry and wet seasons in Laguna, Philippines. The average gross CO2e emission was 17.9 tons CO2e ha-1 or 2.98 tons CO2e ton-1 rice (production 82%, post-production 18%). Contributing to this total were soil emissions at 72%, the use of chemicals at 5%, burning of rice straw at 3%, cooking at 12%, and transportation at 5%. The average social cost of carbon (SCC) per ton of rice was estimated at $119. Increasing grain yield per unit area with shorter growth duration decreased CO2e emission of rice per unit of weight. Cultivation of rice varieties GSR8 and GSR2 emitted 37.0% lower CO2e than the popular inbred varieties.


Sign in / Sign up

Export Citation Format

Share Document