DETERMINATION OF CATION EXCHANGE CAPACITY OF CALCAREOUS SOILS AND THEIR PERCENT BASE SATURATION

Soil Science ◽  
1976 ◽  
Vol 121 (2) ◽  
pp. 65-71 ◽  
Author(s):  
E. P. PAPANICOLAOU
2006 ◽  
Vol 63 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Zigomar Menezes de Souza ◽  
José Marques Júnior ◽  
Gener Tadeu Pereira ◽  
Diogo Mazza Barbieri

Soils with small variations in relief and under the same management system present differentiated spatial variabilities of their attributes. This variability is a function of soil position in the landscape, even if the relief has little expression. The aim of this work was to investigate the effects of relief shape and depth on spatial variability of soil chemical attributes in a Typic Hapludox cultivated with sugar cane at two landscape compartments. Soil samples were collected in the intercrossing points of a grid, in the traffic line, at 0-0.2 m and 0.6-0.8 m depths, comprising a set of 100 georeferenced points. The spatial variabilities of pH, P, K, Ca, Mg, cation exchange capacity and base saturation were quantified. Small relief shape variations lead to differentiated variability in soil chemical attributes as indicated by the dependence on pedoform found for chemical attributes at both 0-0.2 m and 0.6-0.8 m depths. Because of the higher variability, it is advisable to collect large number of samples in areas with concave and convex shapes. Combining relief shapes and geostatistics allows the determination of areas with different spatial variability for soil chemical attributes.


2014 ◽  
Vol 21 (3) ◽  
pp. 487-498 ◽  
Author(s):  
Dawid Jaremko ◽  
Dorota Kalembasa

Abstract The object of this study was to compare the results obtained with four methods of determination of cation exchange capacity (CEC) and sum of exchangeable cations (Ca, Mg, K) in soils. One of these methods is Kappen’s method and the others methods are based on different extracting reagents: sodium acetate (pH = 8.2), barium chloride and hexaamminecobalt(III) chloride. Values measured with barium ions and hexaamminecobalt(III) ions as index cations are very comparable and these two methods can be considered as equivalent. Kappen’s method gives overestimated results, especially for acid soils reach in organic matter and very calcareous soils. Sodium acetate, buffering the pH of the extracting solution, causes increase of numbers of negatively charged sites and particularly those bonded to organic matter and for this reason values obtained with this method are overestimated. Nevertheless, it is possible to correct this error for a given soil sample by regression equation considering pH of soil, clay and organic carbon content.


Sign in / Sign up

Export Citation Format

Share Document