scholarly journals Leukocyte-Endothelium Interactions during Permanent Focal Cerebral Ischemia in Mice

2004 ◽  
Vol 24 (6) ◽  
pp. 668-676 ◽  
Author(s):  
Hiroharu Kataoka ◽  
Seong-Woong Kim ◽  
Nikolaus Plesnila

The contribution of leukocyte infiltration to brain damage after permanent focal cerebral ischemia and the underlying molecular mechanisms are still unclear. Therefore, the aim of this study was to establish a mouse model for the visualization of leukocytes in the cerebral microcirculation in vivo and to investigate leukocyte-endothelial interaction (LEI) after permanent middle cerebral artery occlusion (MCAO). Sham-operated 129/Sv mice showed physiologic LEI in pial venules as observed by intravital fluorescent microscopy. Permanent focal cerebral ischemia induced a significant increase of LEI predominantly in pial venules. The number of rolling and adherent leukocytes reached 36.5 ± 13.2/100 μm × min and 22.5 ± 7.9/100 μm × min, respectively at 120 minutes after MCAO ( P = 0.016 vs. control). Of note, rolling and adherent leukocytes were also observed in arterioles of ischemic animals (7.3 ± 3.0/100 μm × min rolling and 3.0 ± 3.6/100 μm × min adherent). Capillary density was not different between groups. These results demonstrate that leukocytes accumulate in the brain not only after transient but also after permanent focal cerebral ischemia and may therefore contribute to brain damage after stroke without reperfusion.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chujun Zhang ◽  
Sai Zhang ◽  
Lanxiang Wang ◽  
Soyeon Kang ◽  
Jiabao Ma ◽  
...  

Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.


2001 ◽  
Vol 21 (4) ◽  
pp. 430-439 ◽  
Author(s):  
Laszlo Olah ◽  
Stefan Wecker ◽  
Mathias Hoehn

Changes in apparent diffusion coefficients (ADC) were compared with alterations of adenosine triphosphate (ATP) concentration and pH in different phases of transient focal cerebral ischemia to study the ADC threshold for breakdown of energy metabolism and tissue acidosis during ischemia and reperfusion. Male Wistar rats underwent 1 hour of middle cerebral artery occlusion without recirculation (n = 3) or with 1 hour (n = 4) or 10 hours of reperfusion (n = 5) inside the magnet, using a remotely controlled thread occlusion model. ADC maps were calculated from diffusion-weighted images and normalized to the preischemic value to obtain relative ADC maps. Hemispheric lesion volume (HLV) was determined on the last relative ADC maps at different relative ADC thresholds and was compared to the HLV measured by ATP depletion and by tissue acidosis. The HLVs, defined by ATP depletion and tissue acidosis, were 26.0% ± 10.6% and 38.1% ± 6.5% at the end of ischemia, 3.3% ± 2.4% and 4.8% ± 3.5% after 1 hour of reperfusion, and 11.2% ± 4.7% and 10.9% ± 5.2% after 10 hours of recirculation, respectively. The relative ADC thresholds for energy failure were consistently approximately 77% of the control value in the three different groups. The threshold for tissue acidosis was higher at the end of ischemia (86% of control) but was similar to the results obtained for ATP depletion after 1 hour (78% of control) and 10 hours (76% of control) of recirculation. These results indicate that the described relative ADC threshold of approximately 77% of control provides a good estimate for the breakdown of energy metabolism not only during middle cerebral artery occlusion but also at the early phase of reperfusion, when recovery of energy metabolism is expected to occur, or some hours later, when development of secondary energy failure was described.


2007 ◽  
Vol 28 (4) ◽  
pp. 812-823 ◽  
Author(s):  
Richard Milner ◽  
Stephanie Hung ◽  
Xiaoyun Wang ◽  
Maria Spatz ◽  
Gregory J del Zoppo

During focal cerebral ischemia, the detachment of astrocytes from the microvascular basal lamina is not completely explained by known integrin receptor expression changes. Here, the impact of experimental ischemia (oxygen—glucose deprivation (OGD)) on dystroglycan expression by murine endothelial cells and astrocytes grown on vascular matrix laminin, perlecan, or collagen and the impact of middle cerebral artery occlusion on αβ-dystroglycan within cerebral microvessels of the nonhuman primate were examined. Dystroglycan was expressed on all cerebral microvessels in cortical gray and white matter, and the striatum. Astrocyte adhesion to basal lamina proteins was managed in part by α-dystroglycan, while ischemia significantly reduced expression of dystroglycan both in vivo and in vitro. Furthermore, dystroglycan and integrin α6β4 expressions on astrocyte end-feet decreased in parallel both in vivo and in vitro. The rapid loss of astrocyte dystroglycan during OGD appears protease-dependent, involving an matrix metalloproteinase-like activity. This may explain the rapid detachment of astrocytes from the microvascular basal lamina during ischemic injury, which could contribute to significant changes in microvascular integrity.


1996 ◽  
Vol 16 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Kazushi Matsushima ◽  
Matthew J. Hogan ◽  
Antoine M. Hakim

The possibility that cortical spreading depression (CSD) may have neuroprotective action during subsequent focal cerebral ischemia was examined in rats. Three days before the imposition of focal cerebral ischemia CSDs were elicited by applying potassium chloride (KCl) for 2 h through a microdialysis probe implanted in the occipital cortex. Control animals were handled identically except that saline was infused instead of KCl. Focal ischemia was produced by the intraluminal suture method and cortical and subcortical infarct volumes were measured 7 days later. Neocortical infarct volume was reduced from 124.8 ± 49.5 mm3 in the controls to 62.9 ± 59.5 mm3 in the animals preconditioned with CSD (p = 0.012). There was no difference between the two groups in the subcortical infarct volume or in CBF, measured by the hydrogen clearance method, during or immediately after the ischemic interval. Our data indicate that preconditioning CSD applied 3 days before middle cerebral artery occlusion may increase the brain's resistance to focal ischemic damage and may be used as a model to explore the neuroprotective molecular responses of neuronal and glial cells.


2016 ◽  
Vol 39 (4) ◽  
pp. 1339-1346 ◽  
Author(s):  
Lichun Pei ◽  
Songyan Meng ◽  
Weigang Yu ◽  
Qiujun Wang ◽  
Fangfang Song ◽  
...  

Background: Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in protecting against distinct brain damages, including ischemia. Our previous data have shown that the protein level of PPARγ is increased in the cortex after middle cerebral artery occlusion (MCAO); PPARγ up-regulation contributes to PPARγ activation and is effective in reducing ischemic damage to brain. However, the regulatory mechanism of PPARγ after focal cerebral ischemia in rats is still unclear. In this study, we evaluated the effect of microRNA on PPARγ in rats subjected to MCAO. Methods: Focal cerebral ischemia was established by surgical middle cerebral artery occlusion; the protein level of PPARγ was detected by Western blotting; the level of microRNA-383 (miR-383) was quantified by real-time PCR; the neurological outcomes were defined by infarct volume and neurological deficits. Luciferase assay was used to identify the luciferase activities of PPARγ and miR-383. Results: We showed here that miR-383 level was down-regulated in the ischemic hemisphere of rats 24h after MCAO. Overexpression of miR-383 by miR-383 agomir increased infarct volume and aggravated neurological damage. Administration of miR-383 antagomir had the opposite effects. Furthermore, we found that PPARγ protein was down-regulated by miR-383 overexpression, and up-regulated by miR-383 inhibition both in rat model of MCAO and in primary culture cells. Finally, we found that miR-383 suppressed the luciferase activity of the vector carrying the 3'UTR of PPARγ, whereas mutation of the binding sites relived the repressive effect of miR-383. Conclusion: Our study demonstrated that miR-383 may play a key role in focal cerebral ischemia by regulating PPARγ expression at the post-transcriptional level, and miR-383 may be a potential therapeutic target for stroke.


2013 ◽  
Vol 33 (12) ◽  
pp. 1967-1975 ◽  
Author(s):  
Abraham Martín ◽  
Boguslaw Szczupak ◽  
Vanessa Gómez-Vallejo ◽  
Sandra Plaza ◽  
Daniel Padró ◽  
...  

The use of selective serotonin reuptake inhibitors has shown functional improvement after stroke. Despite this, the role of serotoninergic neurotransmission after cerebral ischemia evolution and its involvement in functional recovery processes are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [11C]DASB and [18F]altanserin at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with [11C]DASB and [18F]altanserin showed a dramatic decline in serotonin transporter (SERT) and 5-HT2A binding potential in the cortex and striatum after cerebral ischemia. Interestingly, a slight increase in [11C]DASB binding was observed from days 7 to 21 followed by the uppermost binding at day 28 in the ipsilateral midbrain. In contrast, no changes were observed in the contralateral hemisphere by using both radiotracers. Likewise, both functional and behavior testing showed major impaired outcome at day 1 after ischemia onset followed by a recovery of the sensorimotor function and dexterity from day 21 to day 28 after cerebral ischemia. Taken together, these results might evidence that SERT changes in the midbrain could have a key role in the functional recovery process after cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document