scholarly journals Cortical Spreading Depression Protects against Subsequent Focal Cerebral Ischemia in Rats

1996 ◽  
Vol 16 (2) ◽  
pp. 221-226 ◽  
Author(s):  
Kazushi Matsushima ◽  
Matthew J. Hogan ◽  
Antoine M. Hakim

The possibility that cortical spreading depression (CSD) may have neuroprotective action during subsequent focal cerebral ischemia was examined in rats. Three days before the imposition of focal cerebral ischemia CSDs were elicited by applying potassium chloride (KCl) for 2 h through a microdialysis probe implanted in the occipital cortex. Control animals were handled identically except that saline was infused instead of KCl. Focal ischemia was produced by the intraluminal suture method and cortical and subcortical infarct volumes were measured 7 days later. Neocortical infarct volume was reduced from 124.8 ± 49.5 mm3 in the controls to 62.9 ± 59.5 mm3 in the animals preconditioned with CSD (p = 0.012). There was no difference between the two groups in the subcortical infarct volume or in CBF, measured by the hydrogen clearance method, during or immediately after the ischemic interval. Our data indicate that preconditioning CSD applied 3 days before middle cerebral artery occlusion may increase the brain's resistance to focal ischemic damage and may be used as a model to explore the neuroprotective molecular responses of neuronal and glial cells.

2016 ◽  
Vol 39 (4) ◽  
pp. 1339-1346 ◽  
Author(s):  
Lichun Pei ◽  
Songyan Meng ◽  
Weigang Yu ◽  
Qiujun Wang ◽  
Fangfang Song ◽  
...  

Background: Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in protecting against distinct brain damages, including ischemia. Our previous data have shown that the protein level of PPARγ is increased in the cortex after middle cerebral artery occlusion (MCAO); PPARγ up-regulation contributes to PPARγ activation and is effective in reducing ischemic damage to brain. However, the regulatory mechanism of PPARγ after focal cerebral ischemia in rats is still unclear. In this study, we evaluated the effect of microRNA on PPARγ in rats subjected to MCAO. Methods: Focal cerebral ischemia was established by surgical middle cerebral artery occlusion; the protein level of PPARγ was detected by Western blotting; the level of microRNA-383 (miR-383) was quantified by real-time PCR; the neurological outcomes were defined by infarct volume and neurological deficits. Luciferase assay was used to identify the luciferase activities of PPARγ and miR-383. Results: We showed here that miR-383 level was down-regulated in the ischemic hemisphere of rats 24h after MCAO. Overexpression of miR-383 by miR-383 agomir increased infarct volume and aggravated neurological damage. Administration of miR-383 antagomir had the opposite effects. Furthermore, we found that PPARγ protein was down-regulated by miR-383 overexpression, and up-regulated by miR-383 inhibition both in rat model of MCAO and in primary culture cells. Finally, we found that miR-383 suppressed the luciferase activity of the vector carrying the 3'UTR of PPARγ, whereas mutation of the binding sites relived the repressive effect of miR-383. Conclusion: Our study demonstrated that miR-383 may play a key role in focal cerebral ischemia by regulating PPARγ expression at the post-transcriptional level, and miR-383 may be a potential therapeutic target for stroke.


1997 ◽  
Vol 17 (5) ◽  
pp. 500-506 ◽  
Author(s):  
Wolf-R. Schäbitz ◽  
Stefan Schwab ◽  
Matthias Spranger ◽  
Werner Hacke

Brain-derived neurotrophic factor (BDNF), acting through the high-affinity receptor tyrosine kinase (TrkB), is widely distributed throughout the central nervous system and displays in vitro trophic effects on a wide range of neuronal cells, including hippocampal, cerebellar, and cortical neurons. In vivo, BDNF rescues motorneurons, hippocampal, and substantia nigral dopaminergic cells from traumatic and toxic brain injury. After transient middle cerebral artery occlusion (MCAO), upregulation of BDNF-mRNA in cortical neurons suggests that BDNF potentially plays a neuroprotective role in focal cerebral ischemia. In the current study, BDNF (2.1 μg/d) in vehicle or vehicle alone (controls) was delivered intraventricularly for 8 days, beginning 24 hours before permanent middle cerebral artery occlusion by intraluminal suture in Wistar rats (n = 13 per group). There were no differences in physiological variables recorded during surgery for the two groups. Neurological deficit (0 to 4 scale), which was assessed on a daily basis, improved in BDNF-treated animals compared with controls ( P < 0.05; analysis of variance and Scheffe's test). There were no significant differences in weight in BDNF-treated animals and controls during the experiment. After elective killing on day 7 after MCAO, brains underwent 2,3,5-triphenyltetrazolium chloride staining for calculation of the infarct volume and for histology (hematoxylin and eosin and glial fibrillary acid protein). The mean total infarct volume was 83.1 ± 27.1 mm3 in BDNF-treated animals and 139.2 ± 56.4 mm3 in controls (mean ± SD; P < 0.01, unpaired, two-tailed t-test). The cortical infarct volume was 10.8 ± 7.1 mm3 in BDNF-treated animals and 37.9 ± 19.8 mm3 in controls (mean ± SD; P < 0.05; unpaired, two-tailed t-test), whereas ischemic lesion volume in caudoputaminal infarction was not significantly different. These results show that pretreatment with intraventricular BDNF reduces infarct size after focal cerebral ischemia in rats and support the hypothesis of a neuroprotective role for BDNF in stoke.


2007 ◽  
pp. 369-373
Author(s):  
G Acka ◽  
A Sen ◽  
Z Canakci ◽  
S Yildiz ◽  
A Akin ◽  
...  

The aim of the present study was to evaluate the efficiency of combination of hyperbaric oxygen (HBO) and an antioxidant on permanent focal cerebral ischemia. Male Wistar rats underwent permanent middle cerebral artery occlusion (MCAO). Then, animals were randomly assigned to one of four groups: the control group (n=9) received no treatment, HBO group (n=9) was treated for 90 min at 2.5 absolute atmosphere for 3 days, the U-74389G group (n=8) received single U-74389G injection (3 mg/kg), the HBO + U-74389G group (n=8) received both HBO and U-74389G treatments. Treatments were initiated within the first 10 min after MCAO. After 3 days, the infarct volumes in rat brains were measured. The infarct ratios were 25.6+/-6.5 % for the control group, 21.9+/-6.4 % for the HBO group, 15.7+/-5.7 % for U-74389G group and 12.5+/-3.8 % for HBO + U74389G group. The infarct volumes were significantly reduced in rats treated with U-74389G (p<0.05) and combination therapy (p<0.05). HBO failed to reduce infarct volume significantly. We concluded that 1) U-74389G is more beneficial than HBO on permanent MCAO in rats, and 2) a combined therapy failed to significantly improve infarct volume more than either single treatment.


2008 ◽  
Vol 28 (12) ◽  
pp. 1927-1935 ◽  
Author(s):  
Keita Mayanagi ◽  
Prasad V Katakam ◽  
Tamas Gáspár ◽  
Ferenc Domoki ◽  
David W Busija

The purpose of this study was to investigate the short-term effects of rosuvastatin (RSV), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, on transient, focal cerebral ischemia in C57BL/6J ob/ob mice with insulin resistance (IR). Male ob/ob, lean, or wild-type (WT) mice were treated with RSV (10 mg/kg per day, i.p.) or vehicle for 3 days. Ischemia was induced by 60 mins of middle cerebral artery occlusion (MCAO) and cortical blood flow (CBF) was monitored by laser-Doppler flowmetry. Infarct volumes were measured 24 h after reperfusion. IR mice exhibited a higher infarct volume compared with Lean or WT mice, and RSV reduced infarct volume only in obese mice (40% ± 3% versus 32% ± 3%, P < 0.05). Blood cholesterol and insulin levels were elevated in ob/ob mice but were unaffected by RSV. The CBF reductions during MCAO were similar in all groups and were not affected by RSV. Although RSV did not increase cortical endothelial NO synthase (eNOS) levels in the ob/ob mice, it attenuated the increased cortical expression of intracellular adhesion molecule-1 (ICAM-1) after MCAO from ob/ob mice. Thus, RSV protects against stroke in IR mice by a mechanism independent of effects on the lipid profile, CBF, or eNOS but dependent on suppression of post-MCAO ICAM-1 expression.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Lingguang Liu ◽  
R. T. F. Cheung

Both melatonin and electroacupuncture (EA) have been suggested to be effective treatments against stroke. However, it is unknown whether a combination of these two therapies could be beneficial against transient focal cerebral ischemia. The present study investigated the effects of pretreatment of a combination of melatonin and EA in a rat model of transient middle cerebral artery occlusion (MCAO). After pretreatment of melatonin plus EA (MEA), transient MCAO was induced for 90 minutes in male Sprague-Dawley (SD) rats. The neurological deficit score, brain infarct volume, cerebral edema ratio, neuronal inflammation, and apoptosis were evaluated 24 hours after transient MCAO. The expression of related inflammatory and apoptotic mediators in the brain was also investigated. The results showed that MEA improved neurological outcome, reduced brain infarct volume, and inhibited neuronal inflammation as well as apoptosis 24 hours after transient MCAO. The beneficial effects may derive from downregulation of proinflammatory and proapoptotic mediators and upregulation of antiapoptotic mediators. Thus, these results suggest a preventive effect of pretreatment of MEA on transient focal cerebral ischemia.


2004 ◽  
Vol 24 (7) ◽  
pp. 771-779 ◽  
Author(s):  
Mitsuyoshi Yoshida ◽  
Kazuhiko Nakakimura ◽  
Ying Jun Cui ◽  
Mishiya Matsumoto ◽  
Takefumi Sakabe

Involvement of adenosine and adenosine triphosphate-sensitive potassium (KATP) channels in the development of ischemic tolerance has been suggested in global ischemia, but has not been studied extensively in focal cerebral ischemia. This study evaluated modulating effects of adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and mitochondrial KATP channel blocker 5HD (5-hydroxydecanoate) on the development of tolerance to focal cerebral ischemia in rats. Preconditioning with 30-minute middle cerebral artery occlusion (MCAO) reduced cortical and subcortical infarct volume following 120-minute MCAO (test ischemia) given 72 hours later. The neuroprotective effect of preconditioning was attenuated by 0.1 mg/kg DPCPX given before conditioning ischemia (30-minute MCAO), but no influence was provoked when it was administered before test ischemia. DPCPX had no effect on infarct volume after conditioning or test ischemia when given alone. The preconditioning-induced neuroprotection disappeared when 30 mg/kg 5HD was administered before test ischemia. These results suggest a possible involvement of adenosine A1 receptors during conditioning ischemia and of mitochondrial KATP channels during subsequent severe ischemia in the development of tolerance to focal cerebral ischemia.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hui Hu ◽  
Xiao ou Sun ◽  
Fang Tian ◽  
Hao Zhang ◽  
Qing Liu ◽  
...  

Previous report has indicated that isosteviol has neuroprotective effects. However, isosteviol was administered preventively before ischemia and the inclusion criteria were limited. In the present study, a more soluble and injectable form of isosteviol sodium (STVNA) was administered intravenously hours after transient or permanent middle cerebral artery occlusion (tMCAO or pMCAO) to investigate its neuroprotective effects in rats. The rats were assessed for neurobehavioral deficits 24 hours after ischemia and sacrificed for infarct volume quantification and histology evaluation. STVNA 10 mg·kg−1can significantly reduce the infarct volumes compared with vehicle in animals subjected to tMCAO and is twice as potent as previously reported. Additionally, the therapeutic window study showed that STVNA could reduce the infarct volume compared with the vehicle group when administered 4 hours after reperfusion. A similar effect was also observed in animals treated 4 hours after pMCAO. Assessment of neurobehavioral deficits after 24 hours showed that STVNA treatment significantly reduced neurobehavioral impairments. The number of restored NeuN-labeled neurons was increased and the number of TUNEL positive cells was reduced in animals that received STVNA treatment compared with vehicle group. All of these findings suggest that STVNA might provide therapeutic benefits against cerebral ischemia-induced injury.


2001 ◽  
Vol 21 (4) ◽  
pp. 430-439 ◽  
Author(s):  
Laszlo Olah ◽  
Stefan Wecker ◽  
Mathias Hoehn

Changes in apparent diffusion coefficients (ADC) were compared with alterations of adenosine triphosphate (ATP) concentration and pH in different phases of transient focal cerebral ischemia to study the ADC threshold for breakdown of energy metabolism and tissue acidosis during ischemia and reperfusion. Male Wistar rats underwent 1 hour of middle cerebral artery occlusion without recirculation (n = 3) or with 1 hour (n = 4) or 10 hours of reperfusion (n = 5) inside the magnet, using a remotely controlled thread occlusion model. ADC maps were calculated from diffusion-weighted images and normalized to the preischemic value to obtain relative ADC maps. Hemispheric lesion volume (HLV) was determined on the last relative ADC maps at different relative ADC thresholds and was compared to the HLV measured by ATP depletion and by tissue acidosis. The HLVs, defined by ATP depletion and tissue acidosis, were 26.0% ± 10.6% and 38.1% ± 6.5% at the end of ischemia, 3.3% ± 2.4% and 4.8% ± 3.5% after 1 hour of reperfusion, and 11.2% ± 4.7% and 10.9% ± 5.2% after 10 hours of recirculation, respectively. The relative ADC thresholds for energy failure were consistently approximately 77% of the control value in the three different groups. The threshold for tissue acidosis was higher at the end of ischemia (86% of control) but was similar to the results obtained for ATP depletion after 1 hour (78% of control) and 10 hours (76% of control) of recirculation. These results indicate that the described relative ADC threshold of approximately 77% of control provides a good estimate for the breakdown of energy metabolism not only during middle cerebral artery occlusion but also at the early phase of reperfusion, when recovery of energy metabolism is expected to occur, or some hours later, when development of secondary energy failure was described.


Sign in / Sign up

Export Citation Format

Share Document