Validation of Innovative Techniques for Monitoring Nociception during General Anesthesia

2017 ◽  
Vol 127 (2) ◽  
pp. 272-283 ◽  
Author(s):  
Sandra Funcke ◽  
Sven Sauerlaender ◽  
Hans O. Pinnschmidt ◽  
Bernd Saugel ◽  
Kai Bremer ◽  
...  

Abstract Background This study compares the analgesic indices Analgesia Nociception Index (heart rate variability), Surgical Pleth Index (photoplethysmography), and pupillary dilatation, to heart rate, mean arterial pressure, and bispectral index, with regard to diagnostic accuracy and prediction probability for nociceptive response. The primary endpoint was the correlation between Δ values and the remifentanil dose administered. Methods We anesthetized 38 patients with propofol and increasing doses of remifentanil and applied standardized tetanic and intracutaneous electrical painful stimulations on each analgesic level. Baseline and Δ values of the Analgesia Nociception Index, the Surgical Pleth Index, pupillary dilatation, heart rate, mean arterial pressure, and bispectral index and their relation to remifentanil doses were analyzed by receiver operating characteristic curves, prediction probability (PK), and mixed-model analysis. Results Under propofol sedation, sensitivity and specificity of the Analgesia Nociception Index (PK = 0.98), the Surgical Pleth Index (PK = 0.87), and pupillary dilatation (PK = 0.98) for detecting both painful stimulations were high compared to heart rate (PK = 0.74), mean arterial pressure (PK = 0.75), and bispectral index (PK = 0.55). Baseline values had limited prediction probability toward the nociceptive response (Analgesia Nociception Index: PK = 0.7; Surgical Pleth Index: PK = 0.63; pupillary dilatation: PK = 0.67; and bispectral index: PK = 0.67). The remifentanil dose had an effect (P < 0.001) on all parameters except for bispectral index (P = 0.216). Conclusions The Analgesia Nociception Index, the Surgical Pleth Index, and pupillary dilatation are superior in detecting painful stimulations compared to heart rate and mean arterial pressure but had limited predictive value. These effects are attenuated by increasing dosages of remifentanil. Our data confirm that bispectral index is not a marker of analgesia.

2003 ◽  
Vol 99 (2) ◽  
pp. 334-346 ◽  
Author(s):  
François Forestier ◽  
Marie Hirschi ◽  
Pierre Rouget ◽  
Jean-Cristophe Rigal ◽  
Michel Videcoq ◽  
...  

Background To provide anesthesia for cardiac surgery, hypnotics and opioids are frequently titrated on variables such as mean arterial pressure and heart rate. In this study conducted in patients scheduled to undergo coronary artery bypass grafting, propofol and sufentanil, both administered by computer-controlled infusion, were titrated on the Bispectral Index (BIS) values using a predefined algorithm. Methods After written informed consent, 110 patients, 95 men and 15 women aged 61 (9) yr [mean (SD)], were randomly allocated to receive predicted sufentanil effect site concentrations (Ce) of 0.5, 0.75, 1, 1.25, and 1.5 ng/ml, decreased by a third after sternotomy (groups 1-5). Target induction propofol concentration was 1.5 microg/ml and subsequently adjusted on BIS values. The following parameters were recorded: BIS values, predicted propofol Ce, the number of changes of propofol target, mean arterial pressure, heart rate, the number of bolus injection and doses of vasoconstrictor and vasodilator drugs, time to tracheal extubation, postoperative awareness and satisfaction scores, and cumulative morphine doses for the first postoperative day. Results One patient randomized to group 1 required 0.75 ng/ml sufentanil Ce instead of 0.5 ng/ml for increased BIS values on tracheal intubation. BIS values were similar in the five groups. The predicted propofol Ce values were different (P < 0.05; analysis of variance) among the five groups: 1.59 (0.47) to 1.23 (0.25) microg/ml in group 1 and group 4, respectively. Significantly fewer changes of propofol target were required in group 4 as compared to group 1. There were no differences among the five groups for mean arterial pressure, heart rate, time to tracheal extubation, awareness, satisfaction scores, and morphine requirements. Conclusion These results suggest the BIS, as part of an algorithm that uses both the absolute BIS value and its increase following tracheal intubation, can be used to effectively titrate both propofol and sufentanil. A predicted sufentanil Ce of 1.25 ng/ml before and 0.8 ng/ml after sternotomy was associated with the lowest predicted propofol Ce and fewer changes of propofol target. Lower sufentanil concentrations required higher propofol concentrations and more frequent changes of the target propofol concentration and were associated with similar hemodynamic tolerance.


Author(s):  
Maziyar M. Khansari ◽  
Sarah L. Garvey ◽  
Shayan Farzad ◽  
Yonggang Shi ◽  
Mahnaz Shahidi

Abstract Background Reduced retinal vascular oxygen (O2) content causes tissue hypoxia and may lead to development of vision-threatening pathologies. Since increased vessel tortuosity is an early sign for some hypoxia-implicated retinopathies, we investigated a relationship between retinal vascular O2 content and vessel tortuosity indices. Methods Dual wavelength retinal oximetry using a commercially available scanning laser ophthalmoscope was performed in both eyes of 12 healthy (NC) and 12 sickle cell retinopathy (SCR) subjects. Images were analyzed to quantify retinal arterial and venous O2 content and determine vessel tortuosity index (VTI) and vessel inflection index (VII) in circumpapillary regions. Linear mixed model analysis was used to determine the effect of disease on vascular O2 content, VTI and VII, and relate vascular O2 content with VTI and VII. Models accounted for vessel type, fellow eyes, age and mean arterial pressure. Results Retinal arterial and venous O2 content were lower in SCR (O2A = 11 ± 4 mLO2/dL, O2V = 7 ± 2 mLO2/dL) compared to NC (O2A = 18 ± 3 mLO2/dL, O2V = 13 ± 3 mLO2/dL) subjects (p < 0.001). As expected, O2 content was higher in arteries (15 ± 5 mLO2/dL) than veins (10 ± 4 mLO2/dL) (p < 0.001), but not different between eyes (OD: 12 ± 5 mLO2/dL; OS:13 ± 5 mLO2/dL) (p = 0.3). VTI was not significantly different between SCR (0.18 ± 0.07) and NC (0.15 ± 0.04) subjects, or between arteries (0.18 ± 0.07) and veins (0.16 ± 0.04), or between eyes (OD: 0.18 ± 0.07, OS:0.17 ± 0.05) (p ≥ 0.06). VII was significantly higher in SCR (10 ± 2) compared to NC subjects (8 ± 1) (p = 0.003). VII was also higher in veins (9 ± 2) compared to arteries (8 ± 5) (p = 0.04), but not different between eyes (OD: 9 ± 2; OS: 9 ± 2) (p = 0.2). There was an inverse linear relationship between vascular O2 (13 ± 5 mLO2/dL) content and VII (9 ± 2) (β = −0.5; p = 0.02). Conclusions The findings augment knowledge of relationship between retinal vascular oxygenation and morphological changes and potentially contribute to identifying biomarkers for assessment of retinal hypoxia due to SCR and other retinopathies.


2004 ◽  
Vol 101 (2) ◽  
pp. 294-298 ◽  
Author(s):  
Frank Weber ◽  
Thomas Bein ◽  
Jonny Hobbhahn ◽  
Kai Taeger

Background Autoregressive modeling with exogenous input of middle latency auditory evoked potentials (A-Line autoregressive index [AAI]) has been proposed for monitoring depth of anesthesia in adults. The aim of this study was to evaluate the performance of the AAI during induction of anesthesia with sevoflurane and remifentanil in pediatric patients. Methods Twenty preschool children were anesthetized with sevoflurane and remifentanil. AAI, heart rate, and mean arterial pressure were compared for their ability to distinguish between different hypnotic states before inhalation induction and during sevoflurane anesthesia with and without remifentanil infusion. The prediction probability was calculated for discrimination between the predefined case milestones Awake, Spontaneous Eye Closure, and insertion of a laryngeal mask airway during general anesthesia (Laryngeal Mask Insertion). Results The AAI (mean +/- SD) in Awake children was 79 +/- 10, declining to 59 +/- 22 at Spontaneous Eye Closure and 34 +/- 13 when anesthetized. AAI values significantly overlapped between anesthetic states. For the AAI, the prediction probabilities regarding the ability to discriminate the hypnotic state at the case milestones Awake versus Spontaneous Eye Closure and Awake versus Laryngeal Mask Insertion were 0.77 and 0.99, respectively. In terms of prediction probability values, heart rate and mean arterial pressure were not indicative for anesthetic states. Remifentanil did not influence the AAI. Conclusion During induction of pediatric patients with sevoflurane, the AAI is of higher value in predicting anesthetic states than hemodynamic variables and reliably differentiates between the awake and anesthetized states. However, individual AAI values demonstrate significant variability and overlap between different clinical conditions.


2020 ◽  
Vol 19 ◽  
pp. 153303382097754
Author(s):  
Lihong Zheng ◽  
Juan Zhao ◽  
Likun Zheng ◽  
Shuangfeng Jing ◽  
Xiaoting Wang

Objective: This study aims to investigate the effect of dexmedetomidine on perioperative stress response and immune function in patients with tumors. Methods: Sixty patients who underwent selective radical gastrectomy for cancer were randomly divided into 3 groups: remifentanil group (group R), dexmedetomidine group (group D), and sufentanil group (group S). Remifentanil, dexmedetomidine, and sufentanil were used as general anesthetics. Endotracheal intubation and mechanical ventilation were performed after the spontaneous respiration disappeared. Then, the data were recorded, and blood samples were collected at all time points. Results: The heart rate significantly increased ( P < 0.05) at T1 in group S, and both heart rate and mean arterial pressure significantly increased ( P < 0.05) in group R when compared to group D. The heart rate significantly increased ( P < 0.05) at T2 in group S and group R. Furthermore, the heart rate significantly increased ( P < 0.05) at T3 and T4 in group S and group R. Intra-group comparison: The heart rate at T1–T4 and mean arterial pressure at T1–T4 significantly increased ( P < 0.05) in group S, and the heart rate at T1 and T4, and mean arterial pressure at T2–T4 significantly increased ( P < 0.05) in group R when compared to T0. The serum IL-6, IFN-γ, and β-EP significantly increased ( P < 0.05) at T0’ in group S and group R when compared to group D. Blood glucose, and serum IL-10, IFN-γ, and β-EP significantly increased ( P < 0.05), while IL-18 significantly decreased ( P < 0.05) at T1’ in group S and group R. Conclusion: Continuous infusion of dexmedetomidine in combination with the inhalation of sevoflurane is superior to sevoflurane + remifentanil or sufentanil in patients undergoing tumor surgery.


2018 ◽  
Vol 129 (5) ◽  
pp. 970-988 ◽  
Author(s):  
John J. Savarese ◽  
Hiroshi Sunaga ◽  
Jeff D. McGilvra ◽  
Matthew R. Belmont ◽  
Matthew T. Murrell ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Structure–activity studies were performed to identify a new neuromuscular blocking agent retaining the ultra-short acting characteristics of gantacurium, including degradation and reversal by l-cysteine, but lacking its histaminoid properties in man. CW 1759-50 has emerged from this program. Methods Adduction of CW 1759-50 with l-cysteine was studied by high-performance liquid chromatography and mass spectrometry. Institutional Animal Care and Use Committee–approved comparisons of CW 1759-50 to gantacurium were performed in rhesus monkeys. ED95 for neuromuscular blockade was established. Spontaneous recovery was compared to reversal by l-cysteine in paired studies of boluses or infusions. In addition, changes in mean arterial pressure and heart rate after very large doses of 15 to 60 × ED95 were compared. Results The half-time of adduction of l-cysteine to CW 1759-50 in vitro was 2.3 min. The ED95 of CW 1759-50 was 0.069 ± 0.02 mg/kg; ED95 of gantacurium was 0.081 ± 0.05 mg/kg (P = 0.006). Duration of action (recovery to 95% twitch height after 98 to 99% blockade) was as follows: CW 1759-50, 8.2 ± 1.5 min; and gantacurium, 7.4 ± 1.9 min; (n = 8 and 9, P = 0.355). Administration of l-cysteine (30 mg/kg) shortened recovery (i.e., induced reversal) from CW 1759-50 after boluses or infusions (P always less than 0.0001). Recovery intervals (5 to 95% twitch) ranged from 6.1 to 6.7 min (and did not differ significantly) after boluses of 0.10 to 0.50 mg/kg, as well as control infusions (P = 0.426 by analysis of variance). Dose ratios comparing changes of 30% in mean arterial pressure or heart rate to ED95 for neuromuscular blockade (ED 30% Δ [mean arterial pressure or heart rate]/ED95) were higher for CW 1759-50 than for gantacurium. Conclusions CW 1759-50, similar to gantacurium, is an ultra-short acting neuromuscular blocking agent, antagonized by l-cysteine, in the monkey. The circulatory effects, however, are much reduced in comparison with gantacurium, suggesting a trial in humans.


1998 ◽  
Vol 94 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sharmini Puvi-Rajasingham ◽  
Gareth D. P. Smith ◽  
Adeola Akinola ◽  
Christopher J. Mathias

1. In human sympathetic denervation due to primary autonomic failure, food and exercise in combination may produce a cumulative blood pressure lowering effect due to simultaneous splanchnic and skeletal muscle dilatation unopposed by corrective cardiovascular reflexes. We studied 12 patients with autonomic failure during and after 9 min of supine exercise, when fasted and after a liquid meal. Standing blood pressure was also measured before and after exercise. 2. When fasted, blood pressure fell during exercise from 162 ± 7/92 ± 4 to 129 ± 9/70 ± 5 mmHg (mean arterial pressure by 22 ± 5%), P < 0.0005. After the meal, blood pressure fell from 159 ± 8/88 ± 6 to 129 ± 6/70 ± 4 mmHg (mean arterial pressure by 22 ± 3%), P < 0.0001, and further during exercise to 123 ± 6/61 ± 3 mmHg (mean arterial pressure by 9 ± 3%), P < 0.01. The stroke distance—heart rate product, an index of cardiac output, did not change after the meal. During exercise, changes in the stroke distance—heart rate product were greater when fasted. 3. Resting forearm and calf vascular resistance were higher when fasted. Calf vascular resistance fell further after exercise when fasted. Resting superior mesenteric artery vascular resistance was lower when fed; 0.19 ± 0.02 compared with 032 ± 0.06, P < 0.05. After exercise, superior mesenteric artery vascular resistance had risen by 82%, to 0.53 ± 0.12, P < 0.05 (fasted) and by 47%, to 0.29 ± 0.05, P < 0.05 (fed). 4. On standing, absolute levels of blood pressure were higher when fasted [83 ± 7/52 ± 7 compared with 71 ± 2/41 ± 3 (fed), each P < 0.05]. Subjects were more symptomatic on standing post-exercise when fed. 5. In human sympathetic denervation, exercise in the fed state lowered blood pressure further than when fasted and worsened symptoms of postural hypotension.


1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


Author(s):  
Sidharth Sraban Routray ◽  
Ramakanta Mohanty

ABSTRACTObjective: During laparoscopic surgeries, pneumoperitoneum can lead to various pathophysiologic changes in the cardiovascular system resulting inhypertension and tachycardia. Search for ideal drug to prevent this hemodynamic response goes on. The aim of our study was to evaluate the effect oforally administered moxonidine in attenuating the hemodynamic responses that occur during the laparoscopic surgeries.Methods: A total of 50 adult acetylsalicylic acid I and II patients scheduled for elective laparoscopic surgeries were selected for this prospectiverandomized double-blinded study. They were randomly allocated into two groups: moxonidine group (M) and placebo group (P). M group receivedoral moxonidine 0.3 mg at 8 pm on the day before surgery and at 8 am on the day of surgery. P group received a placebo at the same timing as that ofthe M group.Results: Following pneumoperitoneum rise in systolic blood pressure (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and heart rate (HR)was higher in P group in comparison to M group which was statistically significant.Conclusion: Significant rise in HR, SBP, DBP, and mean BP was noted in the P group in comparison to moxonidine group. Moxonidine provided betterperioperative hemodynamic stability in patients undergoing laparoscopic surgeries.Keywords: Moxonidine, Stress response, Laparoscopic.


2012 ◽  
Vol 117 (4) ◽  
pp. 810-821 ◽  
Author(s):  
Steven M. Bishop ◽  
Sarah I. Yarham ◽  
Vilas U. Navapurkar ◽  
David K. Menon ◽  
Ari Ercole

Background Physiologic instability is a common clinical problem in the critically ill. Many natural feedback systems are nonlinear, and seemingly random fluctuations may result from the amplification of external perturbations or even arise de novo as a consequence of their underlying dynamics. Characterization of the underlying nonlinear state may be of clinical importance, providing a technique to monitor complex physiology in real-time, guiding patient care and improving outcomes. Methods We employ the wavelet modulus maxima technique to characterize the multifractal properties of heart rate and mean arterial pressure physiology retrospectively for four patients during open abdominal aortic aneurysm repair. We calculated point-estimates for the dominant Hölder exponent (hm, hm) and multifractal spectrum width-at-half-height for both heart rate and mean arterial pressure signals. We investigated how these parameters changed with the administration of an intravenous vasoconstrictor and examined how this varied with atropine pretreatment. Results Hypotensive patients showed lower values of hm, consistent with a more highly fluctuating and complex behavior. Treatment with a vasoconstrictor led to a transient increase in hm, revealing the appearance of longer-range correlations, but did not impact hm. On the other hand, prior treatment with atropine had no effect on hm behavior but did tend to increase hm. Conclusions Hypotension leads to a reduction in dominant Hölder exponents for mean arterial pressure, demonstrating an increasing signal complexity consistent with the activation of important homeokinetic processes. Conversely, pharmacological interventions may also alter the underlying dynamics. Pharmacological restoration of homeostasis leads to system decomplexification, suggesting that homeokinetic mechanisms are derecruited as homeostasis is restored.


Sign in / Sign up

Export Citation Format

Share Document