Postresuscitation Care after Out-of-hospital Cardiac Arrest

2019 ◽  
Vol 131 (1) ◽  
pp. 186-208 ◽  
Author(s):  
Hans Kirkegaard ◽  
Fabio Silvio Taccone ◽  
Markus Skrifvars ◽  
Eldar Søreide

Abstract Out-of-hospital cardiac arrest is a major cause of mortality and morbidity worldwide. With the introduction of targeted temperature management more than a decade ago, postresuscitation care has attracted increased attention. In the present review, we discuss best practice hospital management of unconscious out-of-hospital cardiac arrest patients with a special focus on targeted temperature management. What is termed post–cardiac arrest syndrome strikes all organs and mandates access to specialized intensive care. All patients need a secured airway, and most patients need hemodynamic support with fluids and/or vasopressors. Furthermore, immediate coronary angiography and percutaneous coronary intervention, when indicated, has become an essential part of the postresuscitation treatment. Targeted temperature management with controlled sedation and mechanical ventilation is the most important neuroprotective strategy to take. Targeted temperature management should be initiated as quickly as possible, and according to international guidelines, it should be maintained at 32° to 36°C for at least 24 h, whereas rewarming should not increase more than 0.5°C per hour. However, uncertainty remains regarding targeted temperature management components, warranting further research into the optimal cooling rate, target temperature, duration of cooling, and the rewarming rate. Moreover, targeted temperature management is linked to some adverse effects. The risk of infection and bleeding is moderately increased, as is the risk of hypokalemia and magnesemia. Circulation needs to be monitored invasively and any deviances corrected in a timely fashion. Outcome prediction in the individual patient is challenging, and a self-fulfilling prophecy poses a real threat to early prognostication based on clinical assessment alone. Therefore, delayed and multimodal prognostication is now considered a key element of postresuscitation care. Finally, modern postresuscitation care can produce good outcomes in the majority of patients but requires major diagnostic and therapeutic resources and specific training. Hence, recent international guidelines strongly recommend the implementation of regional prehospital resuscitation systems with integrated and specialized cardiac arrest centers.

Author(s):  
Thomas Hvid Jensen ◽  
Peter Juhl-Olsen ◽  
Bent Roni Ranghøj Nielsen ◽  
Johan Heiberg ◽  
Christophe Henri Valdemar Duez ◽  
...  

Abstract Background Transthoracic echocardiographic (TTE) indices of myocardial function among survivors of out-of-hospital cardiac arrest (OHCA) have been related to neurological outcome; however, results are inconsistent. We hypothesized that changes in average peak systolic mitral annular velocity (s’) from 24 h (h) to 72 h following start of targeted temperature management (TTM) predict six-month neurological outcome in comatose OHCA survivors. Methods We investigated the association between peak systolic velocity of the mitral plane (s’) and six-month neurological outcome in a population of 99 patients from a randomised controlled trial comparing TTM at 33 ± 1 °C for 24 h (h) (n = 47) vs. 48 h (n = 52) following OHCA (TTH48-trial). TTE was conducted at 24 h, 48 h, and 72 h after reaching target temperature. The primary outcome was 180 days neurological outcome assessed by Cerebral Performance Category score (CPC180) and the primary TTE outcome measure was s’. Secondary outcome measures were left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), e’, E/e’ and tricuspid annular plane systolic excursion (TAPSE). Results Across all three scan time points s’ was not associated with neurological outcome (ORs: 24 h: 1.0 (95%CI: 0.7–1.4, p = 0.98), 48 h: 1.13 (95%CI: 0.9–1.4, p = 0.34), 72 h: 1.04 (95%CI: 0.8–1.4, p = 0.76)). LVEF, GLS, E/e’, and TAPSE recorded on serial TTEs following OHCA were neither associated with nor did they predict CPC180. Estimated median e’ at 48 h following TTM was 5.74 cm/s (95%CI: 5.27–6.22) in patients with good outcome (CPC180 1–2) vs. 4.95 cm/s (95%CI: 4.37–5.54) in patients with poor outcome (CPC180 3–5) (p = 0.04). Conclusions s’ assessed on serial TTEs in comatose survivors of OHCA treated with TTM was not associated with CPC180. Our findings suggest that serial TTEs in the early post-resuscitation phase during TTM do not aid the prognostication of neurological outcome following OHCA. Trial registration NCT02066753. Registered 14 February 2014 – Retrospectively registered,


2021 ◽  
Author(s):  
Ryuichiro Kakizaki ◽  
Naofumi Bunya ◽  
Shuji Uemura ◽  
Takehiko Kasai ◽  
Keigo Sawamoto ◽  
...  

Abstract Background: Targeted temperature management (TTM) is recommended for unconscious patients after a cardiac arrest. However, its effectiveness in patients with post-cardiac arrest syndrome (PCAS) by hanging remains unclear. Therefore, this study aimed to investigate the relationship between TTM and favorable neurological outcomes in patients with PCAS by hanging.Methods: This study was a retrospective analysis of the Japanese Association for Acute Medicine out-of-hospital cardiac arrest (OHCA) registry between June 2014 and December 2017 among patients with PCAS admitted to the hospitals after an OHCA caused by hanging. A multivariate logistic regression analysis was performed to estimate the propensity score and to predict whether patients with PCAS by hanging receive TTM. We compared patients with PCAS by hanging who received TTM (TTM group) and those who did not (non-TTM group) using propensity score analysis.Results: A total of 199 patients with PCAS by hanging were enrolled in this study. Among them, 43 were assigned to the TTM group and 156 to the non-TTM group. Logistic regression model adjusted for propensity score revealed that TTM was not associated with favorable neurological outcome at 1-month (adjusted odds ratio [OR]: 1.38, 95% confidence interval [CI]: 0.27–6.96). Moreover, no difference was observed in the propensity score-matched cohort (adjusted OR: 0, 73, 95% CI: 0.10–4.71) and in the inverse probability of treatment weighting-matched cohort (adjusted OR: 0.63, 95% CI: 0.15–2.69).Conclusions: TTM was not associated with increased favorable neurological outcomes at 1-month in patients with PCAS after OHCA by hanging.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Michael Bernett ◽  
Robert A Swor

Introduction: Head computed tomography (HCT) is often performed to assess for hypoxic-ischemic brain injury in resuscitated out of hospital cardiac arrest (OHCA) patients. Our primary objective was to assess whether cerebral edema (CE) on early HCT is associated with poor survival and neurologic outcome post OHCA. Methods: We included subjects from a prospectively collected cardiac arrest database of OHCA adult patients who received targeted temperature management (TTM) at two academic suburban hospitals from 2009-Sept-2018. Cases were included if a HCT was performed in the emergency department (ED). Patient demographics and cardiac arrest variables were collected. HCT results were abstracted by study authors from radiology reports. HCT findings were categorized as no acute disease, evidence of CE, or excluded (bleed, tumor, stroke). Outcomes were survival to discharge or cerebral performance scores (CPC) at discharge of three or four (poor neurologic outcome). Descriptive statistics, univariate, multivariate, survival, and interrater reliability analysis were performed. Results: During the study period, there were 425 OHCA, 277 cases had ED HCTs performed; 254 cases were included in the final survival analysis. Patients were predominately male, 189 (65.0%), average age 60.9 years, average BMI of 30.5. Of all cases, 44 (15.9%) showed CE on CT. Univariate analysis demonstrated that CE was associated with 9.2-fold greater odds of poor outcome (OR: 9.23; 95% CI 1.73, 49.2), and 9.1-fold greater odds of death (OR: 9.09: 95% CI 2.4 33.9). In adjusted analysis, CE was associated with 14.9-fold greater odds of poor CPC outcome (AOR: 14.9, 95% CI, 2.49, 88.4), and 13.7-fold greater odds of death (AOR: 13.7, 95% CI, 3.26, 57.4). Adjusted survival analysis demonstrated that patients with CE on HCT had 3.6-fold greater hazard of death than those without CE (HR: 3.56: 95% CI 2.34, 5.41). Interrater reliability demonstrated excellent agreement between reviewers for CE on HCT (κ = 0.86). Conclusion: The results identify that abnormal HCTs early in the post-arrest period in OHCA patients are associated with poor rates of survival and neurologic outcome. Prospective work is needed to confirm whether selection bias or other variables confound this association.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Ian R Drennan ◽  
Steve Lin ◽  
Kevin E Thorpe ◽  
Jason E Buick ◽  
Sheldon Cheskes ◽  
...  

Introduction: Targeted temperature management (TTM) reduces neurologic injury from out-of-hospital cardiac arrest (OHCA). As the risk of neurologic injury increases with prolonged cardiac arrests, the benefit of TTM may depend upon cardiac arrest duration. We hypothesized that there is a time-dependent effect of TTM on neurologic outcomes from OHCA. Methods: Retrospective, observational study of the Toronto RescuNET Epistry-Cardiac Arrest database from 2007 to 2014. We included adult (>18) OHCA of presumed cardiac etiology that remained comatose (GCS<10) after a return of spontaneous circulation. We used multivariable logistic regression to determine the effect of TTM and the duration of cardiac arrest on good neurologic outcome (Modified Rankin Scale (mRS) 0-3) and survival to hospital discharge while controlling for other known predictors. Results: There were 1496 patients who met our inclusion criteria, of whom 981 (66%) received TTM. Of the patients who received TTM, 59% had a good neurologic outcome compared to 39% of patients who did not receive TTM (p< 0.001). After adjusting for the Utstein variables, use of TTM was associated with improved neurologic outcome (OR 1.60, 95% CI 1.10-2.32; p = 0.01) but not with survival to discharge (OR 1.23, 95% CI 0.90-1.67; p = 0.19). The impact of TTM on neurologic outcome was dependent on the duration of cardiac arrest (p<0.05) (Fig 1). Other significant predictors of good neurologic outcome were younger age, public location, initial shockable rhythm, and shorter duration of cardiac arrest (all p values < 0.05). A subgroup analysis found the use of TTM to be associated with neurologic outcome in both shockable (p = 0.01) and non-shockable rhythms (p = 0.04) but was not associated with survival to discharge in either group (p = 0.12 and p = 0.14 respectively). Conclusion: The use of TTM was associated with improved neurologic outcome at hospital discharge. Patients with prolonged durations of cardiac arrest benefited more from TTM.


Sign in / Sign up

Export Citation Format

Share Document