scholarly journals Toll-like Receptor 7 Contributes to Inflammation, Organ Injury, and Mortality in Murine Sepsis

2019 ◽  
Vol 131 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Wenling Jian ◽  
Lili Gu ◽  
Brittney Williams ◽  
Yan Feng ◽  
Wei Chao ◽  
...  

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Sepsis remains a critical illness with high mortality. The authors have recently reported that mouse plasma RNA concentrations are markedly increased during sepsis and closely associated with its severity. Toll-like receptor 7, originally identified as the sensor for single-stranded RNA virus, also mediates host extracellular RNA-induced innate immune responses in vitro and in vivo. Here, the authors hypothesize that innate immune signaling via Toll-like receptor 7 contributes to inflammatory response, organ injury, and mortality during polymicrobial sepsis. Methods Sepsis was created by (1) cecal ligation and puncture or (2) stool slurry peritoneal injection. Wild-type and Toll-like receptor 7 knockout mice, both in C57BL/6J background, were used. The following endpoints were measured: mortality, acute kidney injury biomarkers, plasma and peritoneal cytokines, blood bacterial loading, peritoneal leukocyte counts, and neutrophil phagocytic function. Results The 11-day overall mortality was 81% in wild-type mice and 48% in Toll-like receptor 7 knockout mice after cecal ligation and puncture (N = 27 per group, P = 0.0031). Compared with wild-type septic mice, Toll-like receptor 7 knockout septic mice also had lower sepsis severity, attenuated plasma cytokine storm (wild-type vs. Toll-like receptor 7 knockout, interleukin-6: 43.2 [24.5, 162.7] vs. 4.4 [3.1, 12.0] ng/ml, P = 0.003) and peritoneal inflammation, alleviated acute kidney injury (wild-type vs. Toll-like receptor 7 knockout, neutrophil gelatinase-associated lipocalin: 307 ± 184 vs.139 ± 41-fold, P = 0.0364; kidney injury molecule-1: 40 [16, 49] vs.13 [4, 223]-fold, P = 0.0704), lower bacterial loading, and enhanced leukocyte peritoneal recruitment and phagocytic activities at 24 h. Moreover, stool slurry from wild-type and Toll-like receptor 7 knockout mice resulted in similar level of sepsis severity, peritoneal cytokines, and leukocyte recruitment in wild-type animals after peritoneal injection. Conclusions Toll-like receptor 7 plays an important role in the pathogenesis of polymicrobial sepsis by mediating host innate immune responses and contributes to acute kidney injury and mortality.

2018 ◽  
Vol 314 (5) ◽  
pp. F788-F797
Author(s):  
Jonathan M. Street ◽  
Erik H. Koritzinsky ◽  
Tiffany R. Bellomo ◽  
Xuzhen Hu ◽  
Peter S. T. Yuen ◽  
...  

Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.


2018 ◽  
Vol 128 ◽  
pp. 30-37 ◽  
Author(s):  
Susanne Maria Ziegler ◽  
Cai Niklaas Feldmann ◽  
Sven Hendrik Hagen ◽  
Laura Richert ◽  
Tanja Barkhausen ◽  
...  

2014 ◽  
Vol 82 (12) ◽  
pp. 5076-5085 ◽  
Author(s):  
Hua Ren ◽  
Yunfei Teng ◽  
Binghe Tan ◽  
Xiaoyu Zhang ◽  
Wei Jiang ◽  
...  

ABSTRACTExtracellular ATP (eATP), released as a “danger signal” by injured or stressed cells, plays an important role in the regulation of immune responses, but the relationship between ATP release and innate immune responses is still uncertain. In this study, we demonstrated that ATP was released through Toll-like receptor (TLR)-associated signaling in bothEscherichia coli-infected mice and lipopolysaccharide (LPS)- or Pam3CSK4-treated macrophages. This ATP release could be blocked completely only byN-ethylmaleimide (NEM), not by carbenoxolone (CBX), flufenamic acid (FFA), or probenecid, suggesting the key role of exocytosis in this process. Furthermore, LPS-induced ATP release could also be reduced dramatically through suppressing calcium mobilization by use of U73122, caffeine, and thapsigargin (TG). In addition, the secretion of interleukin-1β (IL-1β) and CCL-2 was enhanced significantly by ATP, in a time- and dose-dependent manner. Meanwhile, macrophage-mediated phagocytosis of bacteria was also promoted significantly by ATP stimulation. Furthermore, extracellular ATP reduced the number of invading bacteria and protected mice from peritonitis by activating purinergic receptors. Mechanistically, phosphorylation of AKT and ERK was overtly increased by ATP in antibacterial immune responses. Accordingly, if we blocked the P2X- and P2Y-associated signaling pathway by using suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid), tetrasodium salt (PPADS), the ATP-enhanced immune response was restrained significantly. Taken together, our findings reveal an internal relationship between danger signals and TLR signaling in innate immune responses, which suggests a potential therapeutic significance of calcium mobilization-mediated ATP release in infectious diseases.


2002 ◽  
Vol 168 (2) ◽  
pp. 810-815 ◽  
Author(s):  
Xiaorong Wang ◽  
Christian Moser ◽  
Jean-Pierre Louboutin ◽  
Elena S. Lysenko ◽  
Daniel J. Weiner ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 212 ◽  
Author(s):  
Moo-Seung Lee ◽  
Vernon Tesh

Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.


2010 ◽  
Vol 138 (5) ◽  
pp. S-36
Author(s):  
Yvonne Junker ◽  
Donatella Barisani ◽  
Daniel A. Leffler ◽  
Towia Libermann ◽  
Simon T. Dillon ◽  
...  

Hepatology ◽  
2008 ◽  
Vol 49 (4) ◽  
pp. 1132-1140 ◽  
Author(s):  
Jun Wu ◽  
Zhongji Meng ◽  
Min Jiang ◽  
Rongjuan Pei ◽  
Martin Trippler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document