A review of canakinumab and its therapeutic potential for non-small cell lung cancer

2019 ◽  
Vol 30 (9) ◽  
pp. 879-885 ◽  
Author(s):  
Kara M. Schenk ◽  
Joshua E. Reuss ◽  
Karin Choquette ◽  
Alexander I. Spira
2017 ◽  
Author(s):  
Xiaojie Yu ◽  
Xiuye Ma ◽  
Yiqiang Zhang ◽  
Zhenze Zhao ◽  
Liqin Du ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 206 ◽  
Author(s):  
Vineela Parvathaneni ◽  
Nishant S. Kulkarni ◽  
Snehal K. Shukla ◽  
Pamela T. Farrales ◽  
Nitesh K. Kunda ◽  
...  

Non-small cell lung cancer (NSCLC) is a global disorder, treatment options for which remain limited with resistance development by cancer cells and off-target events being major roadblocks for current therapies. The discovery of new drug molecules remains time-consuming, expensive, and prone to failure in safety/efficacy studies. Drug repurposing (i.e., investigating FDA-approved drug molecules for use against new indications) provides an opportunity to shorten the drug development cycle. In this project, we propose to repurpose pirfenidone (PFD), an anti-fibrotic drug, for NSCLC treatment by encapsulation in a cationic liposomal carrier. Liposomal formulations were optimized and evaluated for their physicochemical properties, in-vitro aerosol deposition behavior, cellular internalization capability, and therapeutic potential against NSCLC cell lines in-vitro and ex-vivo. Anti-cancer activity of PFD-loaded liposomes and molecular mechanistic efficacy was determined through colony formation (1.5- to 2-fold reduction in colony growth compared to PFD treatment in H4006, A549 cell lines, respectively), cell migration, apoptosis and angiogenesis assays. Ex-vivo studies using 3D tumor spheroid models revealed superior efficacy of PFD-loaded liposomes against NSCLC, as compared to plain PFD. Hence, the potential of inhalable liposome-loaded pirfenidone in NSCLC treatment has been established in-vitro and ex-vivo, where further studies are required to determine their efficacy through in vivo preclinical studies followed by clinical studies.


Author(s):  
Ziyi Wang ◽  
Xinyu Zhang ◽  
Xuedong Zhang ◽  
Xuedong Jiang

Long intergenic nonprotein coding RNA 1703 (LINC01703) has diagnostic significancein lung adenocarcinoma. However, its specific roles in non-small-cell lung cancer(NSCLC) and downstream mechanisms have not been investigated. In the current study,we characterized the role of LINC01703 in NSCLC malignancy and elucidated itsdetailed mechanism of action. LINC01703 expression was measured by qRT-PCR. Theregulatory effects of LINC01703 on the malignancy of NSCLC cells were assessed bymultiple functional experiments. The targeted interaction was confirmed by RNAimmunoprecipitation and luciferase reporter assays. Herein, overexpression ofLINC01703 in NSCLC was indicated in the TCGA database and further proven in ourcohort. Functional studies revealed that knocking down LINC01703 repressed cellproliferation, colony formation, migration and invasion in vitro, which wasaccompanied by the induction of apoptosis. The tumor growth of LINC01703-silencedcells was also inhibited in vivo. Mechanistic analyses revealed that LINC01703functioned as a competing endogenous RNA for microRNA-605-3p (miR-605-3p) inNSCLC cells, which thereby upregulated the miR-605-3p target metastasis associatedwith colon cancer 1 (MACC1). Rescue experiments highlighted that the regulatoryactions of LINC01703 ablation on NSCLC cells were abolished in response to miR-605-3p downregulation or MACC1 overexpression. In conclusion, LINC01703enhanced the aggressiveness of NSCLC cells by altering miR-605-3p/MACC1. Ourwork suggests the therapeutic potential of LINC01703/miR-605-3p/MACC1 in NSCLC.


Sign in / Sign up

Export Citation Format

Share Document