scholarly journals Thromboxane A2 receptor contributes to the activation of rat pancreatic stellate cells induced by 8-epi-prostaglandin F2α

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Xiao-Li Zhang ◽  
Fei Li ◽  
Ye-Qing Cui ◽  
Shuang Liu ◽  
Hai-Chen Sun
1990 ◽  
Vol 64 (01) ◽  
pp. 091-096 ◽  
Author(s):  
W J Janssens ◽  
F J S Cools ◽  
L A M Hoskens ◽  
J M Van Nueten

SummaryRidogrel (6.3 × 10−6 to 10−4 M) inhibited contractions of isolated rat caudal arteries and rabbit femoral arteries caused by U-46619. The slope of an Arunlakshana-Schild plot (pA2-value: 3.4 × 10−6 M) on the caudal artery was slightly higher than one (1.14). This effect was maximal within}D min of incubation of the blood vessel with the compound and easily reversible. Ridogrel antagonised contractions of isolated rabbit femoral arteries caused by prostaglandin Fzo2α in the same concentration range. Ridogrel also inhibited contractions induced by aggregating rat platelets on isolated rat caudal arteries (itt the presence of ketanserin 4 × 10−7 M) and on isolated rabbit pulmonary and femoral arteries (in the absence of ketanserin). Ridogrel had no effect on Ca2+-induced contractions in depolarised isolated rabbit femoral arteries, and at 10−4 M antagonised serotonin-induced contractions in this blood vessel. Its effect on serotonin-induced contractions was statistically significant but very small on isolated rat caudal arteries. These observations indicate that ridogrel is an antagonist of prostaglandin endoperoxide/thromboxane A2 and prostaglandin F2α raCeptors on vascular smooth muscle.


2002 ◽  
Vol 30 (5) ◽  
pp. 498-504 ◽  
Author(s):  
Yoshihiro Kawabata ◽  
Shigeru Furuta ◽  
Yutaka Shinozaki ◽  
Tadashi Kurimoto ◽  
Ryuichiro Nishigaki

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax2770 ◽  
Author(s):  
Praneeth R. Kuninty ◽  
Ruchi Bansal ◽  
Susanna W. L. De Geus ◽  
Deby F. Mardhian ◽  
Jonas Schnittert ◽  
...  

Abundant desmoplastic stroma is the hallmark for pancreatic ductal adenocarcinoma (PDAC), which not only aggravates the tumor growth but also prevents tumor penetration of chemotherapy, leading to treatment failure. There is an unmet clinical need to develop therapeutic solutions to the tumor penetration problem. In this study, we investigated the therapeutic potential of integrin α5 (ITGA5) receptor in the PDAC stroma. ITGA5 was overexpressed in the tumor stroma from PDAC patient samples, and overexpression was inversely correlated with overall survival. In vitro, knockdown of ITGA5 inhibited differentiation of human pancreatic stellate cells (hPSCs) and reduced desmoplasia in vivo. Our novel peptidomimetic AV3 against ITGA5 inhibited hPSC activation and enhanced the antitumor effect of gemcitabine in a 3D heterospheroid model. In vivo, AV3 showed a strong reduction of desmoplasia, leading to decompression of blood vasculature, enhanced tumor perfusion, and thereby the efficacy of gemcitabine in co-injection and patient-derived xenograft tumor models.


Sign in / Sign up

Export Citation Format

Share Document