scholarly journals Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.

2021 ◽  
Vol 135 (10) ◽  
pp. 1289-1293
Author(s):  
Gregor Werba ◽  
Tamas A. Gonda

Abstract Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 640 ◽  
Author(s):  
Marco Tozzi ◽  
Christiane E. Sørensen ◽  
Lara Magni ◽  
Nynne M. Christensen ◽  
Rayhana Bouazzi ◽  
...  

Pancreatic duct cells are equipped with acid/base transporters important for exocrine secretion. Pancreatic ductal adenocarcinoma (PDAC) cells may utilize such transporters to acidify extracellular tumor microenvironment, creating a niche favoring cell proliferation, fibrosis and resistance to chemotherapy—all contributing to the notoriously bad prognosis of this disease. Here, we report that gastric and non-gastric H+, K+-ATPases (coded by ATP4A and ATP12A) are overexpressed in human and murine pancreatic cancer and that we can target them specifically with proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) in in vitro models of PDAC. Focusing on pantoprazole, we show that it significantly reduced human cancer cell proliferation by inhibiting cellular H+ extrusion, increasing K+ conductance and promoting cyclin D1-dependent cell cycle arrest and preventing STAT3 activation. Pantoprazole also decreased collagen secretion from pancreatic stellate cells. Importantly, in vivo studies show that pantoprazole treatment of tumor-bearing mice reduced tumor size, fibrosis and expression of angiogenic markers. This work provides the first evidence that H+, K+-ATPases contribute to PDAC progression and that these can be targeted by inhibitors of these pumps, thus proving a promising therapeutic strategy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rakesh Pandey ◽  
Yusur Al-Nuaimi ◽  
Rajiv Kumar Mishra ◽  
Sarah K. Spurgeon ◽  
Marc Goodfellow

AbstractPsoriasis is a chronic inflammatory skin disease clinically characterized by the appearance of red colored, well-demarcated plaques with thickened skin and with silvery scales. Recent studies have established the involvement of a complex signalling network of interactions between cytokines, immune cells and skin cells called keratinocytes. Keratinocytes form the cells of the outermost layer of the skin (epidermis). Visible plaques in psoriasis are developed due to the fast proliferation and unusual differentiation of keratinocyte cells. Despite that, the exact mechanism of the appearance of these plaques in the cytokine-immune cell network is not clear. A mathematical model embodying interactions between key immune cells believed to be involved in psoriasis, keratinocytes and relevant cytokines has been developed. The complex network formed of these interactions poses several challenges. Here, we choose to study subnetworks of this complex network and initially focus on interactions involving $$\hbox {TNF}_{\alpha }$$ TNF α , IL-23/IL-17, and IL-15. These are chosen based on known evidence of their therapeutic efficacy. In addition, we explore the role of IL-15 in the pathogenesis of psoriasis and its potential as a future drug target for a novel treatment option. We perform steady state analyses for these subnetworks and demonstrate that the interactions between cells, driven by cytokines could cause the emergence of a psoriasis state (hyper-proliferation of keratinocytes) when levels of $$\hbox {TNF}_{\alpha }$$ TNF α , IL-23/IL-17 or IL-15 are increased. The model results explain and support the clinical potentiality of anti-cytokine treatments. Interestingly, our results suggest different dynamic scenarios underpin the pathogenesis of psoriasis, depending upon the dominant cytokines of subnetworks. We observed that the increase in the level of IL-23/IL-17 and IL-15 could lead to psoriasis via a bistable route, whereas an increase in the level of $$\hbox {TNF}_{\alpha }$$ TNF α would lead to a monotonic and gradual disease progression. Further, we demonstrate how this insight, bistability, could be exploited to improve the current therapies and develop novel treatment strategies for psoriasis.


2021 ◽  
Vol 10 ◽  
Author(s):  
Yang Wu ◽  
Chun Zhang ◽  
Kuirong Jiang ◽  
Jens Werner ◽  
Alexandr V. Bazhin ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a gastrointestinal malignancy with a dismal clinical outcome. Accumulating evidence suggests that activated pancreatic stellate cells (PSCs), the major producers of extracellular matrix (ECM), drive the severe stromal/desmoplastic reaction in PDAC. Furthermore, the crosstalk among PSCs, pancreatic cancer cells (PCCs) as well as other stroma cells can establish a growth-supportive tumor microenvironment (TME) of PDAC, thereby enhancing tumor growth, metastasis, and chemoresistance via various pathways. Recently, targeting stroma has emerged as a promising strategy for PDAC therapy, and several novel strategies have been proposed. The aim of our study is to give a profound review of the role of PSCs in PDAC progression and recent advances in stroma-targeting strategies.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1928
Author(s):  
Lara Magni ◽  
Rayhana Bouazzi ◽  
Hugo Heredero Olmedilla ◽  
Patricia S. S. Petersen ◽  
Marco Tozzi ◽  
...  

Pancreatic stellate cells (PSCs) are important pancreatic fibrogenic cells that interact with pancreatic cancer cells to promote the progression of pancreatic ductal adenocarcinoma (PDAC). In the tumor microenvironment (TME), several factors such as cytokines and nucleotides contribute to this interplay. Our aim was to investigate whether there is an interaction between IL-6 and nucleotide signaling, in particular, that mediated by the ATP-sensing P2X7 receptor (P2X7R). Using human cell lines of PSCs and cancer cells, as well as primary PSCs from mice, we show that ATP is released from both PSCs and cancer cells in response to mechanical and metabolic cues that may occur in the TME, and thus activate the P2X7R. Functional studies using P2X7R agonists and inhibitors show that the receptor is involved in PSC proliferation, collagen secretion and IL-6 secretion and it promotes cancer cell migration in a human PSC-cancer cell co-culture. Moreover, conditioned media from P2X7R-stimulated PSCs activated the JAK/STAT3 signaling pathway in cancer cells. The monoclonal antibody inhibiting the IL-6 receptor, Tocilizumab, inhibited this signaling. In conclusion, we show an important mechanism between PSC-cancer cell interaction involving ATP and IL-6, activating P2X7 and IL-6 receptors, respectively, both potential therapeutic targets in PDAC.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3770
Author(s):  
Yoshiaki Sunami ◽  
Johanna Häußler ◽  
Jörg Kleeff

Pancreatic cancer is projected to become the second deadliest cancer by 2030 in the United States, and the overall five-year survival rate stands still at around 9%. The stroma compartment can make up more than 90% of the pancreatic tumor mass, contributing to the hypoxic tumor microenvironment. The dense stroma with extracellular matrix proteins can be a physical and metabolic barrier reducing therapeutic efficacy. Cancer-associated fibroblasts are a source of extracellular matrix proteins. Therefore, targeting these cells, or extracellular matrix proteins, have been considered as therapeutic strategies. However, several studies show that deletion of cancer-associated fibroblasts may have tumor-promoting effects. Cancer-associated fibroblasts are derived from a variety of different cell types, such as pancreatic stellate cells and mesenchymal stem cells, and constitute a diverse cell population consisting of several functionally heterogeneous subtypes. Several subtypes of cancer-associated fibroblasts exhibit a tumor-restraining function. This review article summarizes recent findings regarding origin and functional heterogeneity of tumor-promoting as well as tumor-restraining cancer-associated fibroblasts. A better understanding of cancer-associated fibroblast heterogeneity could provide more specific and personalized therapies for pancreatic cancer patients in the future.


Diseases ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 103 ◽  
Author(s):  
Ashleigh Parkin ◽  
Jennifer Man ◽  
Angela Chou ◽  
Adnan Nagrial ◽  
Jaswinder Samra ◽  
...  

Pancreatic cancer is the third leading cause of cancer-related deaths, characterised by poor survival, marked molecular heterogeneity and high intrinsic and acquired chemoresistance. Only 10–20% of pancreatic cancer patients present with surgically resectable disease and even then, 80% die within 5 years. Our increasing understanding of the genomic heterogeneity of cancer suggests that the failure of definitive clinical trials to demonstrate efficacy in the majority of cases is likely due to the low proportion of responsive molecular subtypes. As a consequence, novel treatment strategies to approach this disease are urgently needed. Significant developments in the field of precision oncology have led to increasing molecular stratification of cancers into subtypes, where individual cancers are selected for optimal therapy depending on their molecular or genomic fingerprint. This review provides an overview of the current status of clinically used and emerging treatment strategies, and discusses the advances in and the potential for the implementation of precision medicine in this highly lethal malignancy, for which there are currently no curative systemic therapies.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 601
Author(s):  
Manoj Amrutkar ◽  
Ivar P. Gladhaug

Pancreatic ductal adenocarcinoma (PDAC), also known as pancreatic cancer (PC), is characterized by an overall poor prognosis and a five-year survival that is less than 10%. Characteristic features of the tumor are the presence of a prominent desmoplastic stromal response, an altered metabolism, and profound resistance to cancer drugs including gemcitabine, the backbone of PDAC chemotherapy. The pancreatic stellate cells (PSCs) constitute the major cellular component of PDAC stroma. PSCs are essential for extracellular matrix assembly and form a supportive niche for tumor growth. Various cytokines and growth factors induce activation of PSCs through autocrine and paracrine mechanisms, which in turn promote overall tumor growth and metastasis and induce chemoresistance. To maintain growth and survival in the nutrient-poor, hypoxic environment of PDAC, tumor cells fulfill their high energy demands via several unconventional ways, a process generally referred to as metabolic reprogramming. Accumulating evidence indicates that activated PSCs not only contribute to the therapy-resistant phenotype of PDAC but also act as a nutrient supplier for the tumor cells. However, the precise molecular links between metabolic reprogramming and an acquired therapy resistance in PDAC remain elusive. This review highlights recent findings indicating the importance of PSCs in aiding growth-permissive metabolic reprogramming and gemcitabine chemoresistance in PDAC.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3519
Author(s):  
Chiara Modica ◽  
Martina Olivero ◽  
Francesca Zuppini ◽  
Melissa Milan ◽  
Cristina Basilico ◽  
...  

Pancreatic ductal adenocarcinoma is an aggressive tumor characterized by the presence of an abundant stromal compartment contributing significantly to the malignant phenotype. Pancreatic stellate cells are peculiar fibroblasts present in the stroma and represent the predominant source of extracellular matrix proteins, pro-inflammatory cytokines, and growth factors, including hepatocyte growth factor (HGF). Exploiting a co-culture system of human pancreatic stellate cells and cancer cells, we demonstrated that fibroblast activation was reduced upon HGF/MET axis inhibition. To unveil the signaling pathways sustaining stroma modulation orchestrated by MET activation in the tumor, we analyzed the gene expression profile in pancreatic cancer cells stimulated with HGF and treated with HGF/MET inhibitors. Transcriptome analysis showed that, among all the genes modulated by HGF, a subset of 125 genes was restored to the basal level following treatment with the inhibitors. By examining these genes via ingenuity pathway analysis, tenascin C emerged as a promising candidate linking MET signaling and tumor microenvironment. MET-dependent tenascin C modulation in pancreatic cancer cells was validated at RNA and protein levels both in vitro and in vivo. In conclusion, this work identifies tenascin C as a gene modulated by MET activation, suggesting a role in MET-mediated tumor-stroma interplay occurring during pancreatic tumor progression.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax2770 ◽  
Author(s):  
Praneeth R. Kuninty ◽  
Ruchi Bansal ◽  
Susanna W. L. De Geus ◽  
Deby F. Mardhian ◽  
Jonas Schnittert ◽  
...  

Abundant desmoplastic stroma is the hallmark for pancreatic ductal adenocarcinoma (PDAC), which not only aggravates the tumor growth but also prevents tumor penetration of chemotherapy, leading to treatment failure. There is an unmet clinical need to develop therapeutic solutions to the tumor penetration problem. In this study, we investigated the therapeutic potential of integrin α5 (ITGA5) receptor in the PDAC stroma. ITGA5 was overexpressed in the tumor stroma from PDAC patient samples, and overexpression was inversely correlated with overall survival. In vitro, knockdown of ITGA5 inhibited differentiation of human pancreatic stellate cells (hPSCs) and reduced desmoplasia in vivo. Our novel peptidomimetic AV3 against ITGA5 inhibited hPSC activation and enhanced the antitumor effect of gemcitabine in a 3D heterospheroid model. In vivo, AV3 showed a strong reduction of desmoplasia, leading to decompression of blood vasculature, enhanced tumor perfusion, and thereby the efficacy of gemcitabine in co-injection and patient-derived xenograft tumor models.


Sign in / Sign up

Export Citation Format

Share Document