Two Distinct Episodes Of Whooping Cough Caused By Consecutive Bordetella Pertussis And Bordetella Parapertussis Infections In A Fully Immunized Healthy Boy

2016 ◽  
Vol 35 (11) ◽  
pp. 1275-1276 ◽  
Author(s):  
Ulrich Heininger ◽  
Detlef Schlassa
1962 ◽  
Vol 60 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Neda Köhler-Kubelka

Investigations carried out to ascertain the ability of various strains of Bordetella pertussis and B. parapertussis to produce agglutinins have shown that the agglutinin response is considerably greater with B. parapertussis.Children inoculated with a combined vaccine in which the parapertussis element contained B. parapertussis in only one-twelfth of the concentration of B. pertussis in the pertussis element showed agglutinins in their sera in titres well above 1:300 for both organisms. There were no cross-reactions and the serological responses were specific throughout. The vaccine used was the standard diphtheria-tetanus-pertussis (DTP) prophylactic to which had been added a vaccine prepared from recently isolated strains of B. parapertussis.Agglutinin titres of both whooping cough components with the combined vaccine were somewhat lower in mice than was the case when monovalent vaccines were used, but they were considered to be satisfactory.It is suggested that the agglutination production test in mice could be used for the assessment of protective power of B. parapertussis vaccines against infection.I wish to thank Dr Ikić, director of the Institute of Immunology, Zagreb, who enabled me to perform all these examinations, further to Dr B. Mravunac and Dr Z. Radanov for having carried out vaccination in children and for the clinical examination of post vaccination reactions.


2015 ◽  
Vol 143 (12) ◽  
pp. 2619-2623 ◽  
Author(s):  
S. JAVED ◽  
F. SAID ◽  
S. A. M. A. S. EQANI ◽  
H. BOKHARI

SUMMARYPertussis or whooping cough is a highly contagious community disease mainly caused by Bordetella pertussis and B. parapertussis. We report a minor outbreak of whooping cough (2009–2010) in symptomatic subjects from Bisham, near Swat, Khyber Pukhtoonkhawa province, Pakistan. Interestingly, our results show that all the culture-positive isolates (n = 21) collected from children (average age 3·46 years), were identified as B. parapertussis after routine identification tests and PCR IS481, IS1001 and IS1002. Furthermore, in the affected patients, none had received immunization with diphtheria-pertussis-tetanus (DTPw) vaccine. Therefore, the possibility of the re-emergence of the disease due to limitation of basic health services as a result of the political unrest due to the 9/11 situation is also examined. Moreover, we discuss the importance of vaccinating both adults and children with DTPwPaw vaccine containing both organisms for better protection.


2011 ◽  
Vol 43 (10) ◽  
pp. 818-820 ◽  
Author(s):  
Habib Bokhari ◽  
Fahad Said ◽  
Muhammad A. Syed ◽  
Amjad Mughal ◽  
Yasmeen F. Kazi ◽  
...  

2007 ◽  
Vol 75 (10) ◽  
pp. 4972-4979 ◽  
Author(s):  
Daniel N. Wolfe ◽  
Elizabeth M. Goebel ◽  
Ottar N. Bjornstad ◽  
Olivier Restif ◽  
Eric T. Harvill

ABSTRACT Bordetella pertussis and Bordetella parapertussis are closely related endemic human pathogens which cause whooping cough, a disease that is reemerging in human populations. Despite how closely related these pathogens are, their coexistence and the limited efficacy of B. pertussis vaccines against B. parapertussis suggest a lack of cross-protective immunity between the two. We sought to address the ability of infection-induced immunity against one of these pathogens to protect against subsequent infection by the other using a mouse model of infection. Immunity induced by B. parapertussis infection protected against subsequent infections by either species. However, immunity induced by B. pertussis infection prevented subsequent B. pertussis infections but did not protect against B. parapertussis infections. The O antigen of B. parapertussis inhibited binding of antibodies to the bacterial surface and was required for B. parapertussis to colonize mice convalescent from B. pertussis infection. Thus, the O antigen of B. parapertussis confers asymmetrical cross-immunity between the causative agents of whooping cough. We propose that these findings warrant investigation of the relative role of B. parapertussis in the resurgence of whooping cough.


1978 ◽  
Vol 81 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Norichika H. Kumazawa ◽  
Masanosuke Yoshikawa

SUMMARYThe epidemiological and drug susceptibility data on whooping cough suggested a possibility that Bordetella pertussis converts in some way to Bordetella parapertussis. To prove this, B. pertussis strain 75 was treated with N-methyl-N'-nitro-N-nitrosoguanidine and a mutant resistant to staphcillin V and eight mutants resistant to trimethoprim were isolated. The staphcillin V-resistant mutant of B. pertussis agreed with all of the criteria of B. parapertussis and the trimethoprimresistant mutants also agreed with many of these criteria. Thus, a hypothesis is presented that B. parapertussis is a mutant of B. pertussis which appeared in nature probably by a selective pressure of antibiotics.


2014 ◽  
Vol 58 (8) ◽  
pp. 4931-4934 ◽  
Author(s):  
Nita R. Shah ◽  
Robert E. W. Hancock ◽  
Rachel C. Fernandez

ABSTRACTBordetella pertussis, the causative agent of whooping cough, has many strategies for evading the human immune system. Lipopolysaccharide (LPS) is an important Gram-negative bacterial surface structure that activates the immune system via Toll-like receptor 4 and enables susceptibility to cationic antimicrobial peptides (CAMPs). We show modification of the lipid A region of LPS with glucosamine increased resistance to numerous CAMPs, including LL-37. Furthermore, we demonstrate that this glucosamine modification increased resistance to outer membrane perturbation.


Sign in / Sign up

Export Citation Format

Share Document